
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, 2023 1

SwiftParade: Anti-burst Multipath Validation
Anxiao He, Kai Bu, Member, IEEE, Jiongrui Huang, Yifei Pang, Qianping Gu, and Kui Ren, Fellow, IEEE

Abstract—Path validation promises a necessary security add-on for future Internet architectures. It authenticates not only source
identities but also the exact path where a packet forwards through. This offers users more flexibility and reliability in network services.
Most existing solutions focus on single-path validation that pre-correlates a packet to a specific forwarding path. However, parallel
transmissions in multipath routing tend to induce bursty traffic that is hardly validated in time by existing solutions. In this paper, we
present SwiftParade as the first attempt toward anti-burst multipath validation. It proposes an aggregate validation technique that can
simultaneously validate a group of packets likely from multiple different paths. This helps to amortize the validation overhead across
packets of the entire group instead of imposing the validation overhead equally on every packet. To implement aggregate validaiton,
SwiftParade further explores a noncommutative homomorphic asymmetric encryption scheme. We prove effectiveness and security of
SwiftParade through theoretical analysis. We also conduct extensive experiments to evaluate SwiftParade performance. The results
show that SwiftParade offers high efficiency and applicability to multipath validation. It outperforms the state-of-the-art multipath
validation solution by about an order of magnitude faster validation.

Index Terms—Multipath validation, dynamic routing, anti-burst packet processing.

✦

1 INTRODUCTION

PATH validation is envisioned to secure packet forward-
ing. The forwarding process of packets is found to be

easily disrupted by various known attacks such as BGP
hijacking [1], path re-routing [2], and packet alteration [3],
[4]. In the current Internet, however, security of packet for-
warding can hardly be validated due to two facts [5]. One is
that end-hosts have little control of packet forwarding paths.
The other is that the forwarding process leaves little infor-
mation for end-hosts to verify the exact forwarding trace.
To address these limitations, path validation advocates that
routers add proofs into packets they forward. Such proofs
enable end-hosts to verify whether a packet has traversed
the intended forwarding path. A plethora of path validation
solutions have been proposed in the recent decade [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16]. As a security
add-on, some path validations solutions are integrated into
future Internet architecture proposals such as NIRA [17],
NEBULA [18], and SCION [19], [20]. A recent path valida-
tion representative—EPIC [12]—is even deployed in the first
path-aware Internet testbed called SCIONLab [21].

Albeit single-path validation has been extensively in-
vestigated, few solutions target multipath routing. In a
network supporting multipath routing, two end-hosts can

• A. He, K. Bu*, and J. Huang are with the College of Computer Science
and Technology, Zhejiang University, Hangzhou 310027, China, and are
also with ZJU-Hangzhou Global Scientific and Technological Innovation
Center, Hangzhou 311215, China.
E-mail: {zjuhax, kaibu, jiongrui huang}@zju.edu.cn

• Y. Pang is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou 310027, China.
E-mail: yf.pang@zju.edu.cn

• Q. Gu is with the School of Computing Science, Simon Fraser University,
Burnaby, British Columbia V5A 1S6, Canada.
E-mail: qgu@sfu.ca

• K. Ren is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou 310027, China, and is also with the Zhejiang
Provincial Key Laboratory of Blockchain and Cyberspace Governance,
Hangzhou 310027, China.
E-mail: kuiren@zju.edu.cn

*Corresponding Author: Kai Bu.

simultaneously use multiple forwarding paths for com-
munication. This not only improves throughput but also
improves reliability if redundant packets are sent along dif-
ferent paths [22]. Initial multipath routing protocols require
that the set of designated paths be fixed [23]. However,
once network status affects the stability of any such fixed
path, packet losses might occur. Protocols like equal-cost
multipath (ECMP) routing [24] and FatPaths [25] are thus
proposed to embrace network dynamics. Multipath routing
also supports both packet-grained and flow-grained traffic
allocation to satisfy different demands. For example, TeXCP
[26], COPE [27], FLARE [28], and LetFlow [29] follow packet
granularity and T-RAT [30] characterizes flow granularity.

A key challenge for multipath validation is thus how
to efficiently embody a large set of proofs for the allowed
paths in packets. Traditional single-path validation solutions
only deal with a single source pre-indicated path [6], [7],
[8], [9], [10], [11], [12], [13], [14]. However, in multipath
routing, packets could be forwarded through any one of
designated paths. It means that adopting traditional path
validation solutions would generate a large number of path
proofs. This can easily lead to heavy computation and
communication overheads. Atlas [15] improves efficiency
by a hierarchical proof scheme. It helps to limit the proof
for each path segment be computed only once, regardless of
how many paths a segment may pertain to.

However, we identify another fundamental challenge
for multipath validation—flow-integrity violation by burst
arrivals. In multipath routing, it is a norm that a large
volume of traffic from multiple paths simultaneously arrives
at an assembly router. Such burst arrivals tend to exhaust
the assembly router’s queue capacity and lead to packet
losses. We in Section 2.1 qualitatively analyze the impact
of multipath routing on packet losses using the state-of-the-
art multipath validation solution—Atlas [15]. If no packet
loss is allowed, even a 4-path multipath routing policy can
limit Atlas bandwidth to as low as 5.83 Gbps.

In this paper, we take on the challenge and propose



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, 2023 2

SwiftParade as the first anti-burst multipath validation so-
lutions. The key idea is to use a non-commutative homo-
morphic asymmetric cryptographic scheme for aggregate
validation of a set of packets over multipath. Specifically,
it supports that a router simultaneously verifies packets
received from multiple predecessor routers. The number
and order of the packets involved in the verification do not
affect the effectiveness of the verification. Furthermore, we
propose a two-factor encryption scheme to defend against
the second residual module attack [31], which can evade
validation by exploiting a vulnerability of ElGamal encryp-
tion [32] used in our algorithm.

We implement SwiftParade using DPDK [33] and eval-
uate its performance. Evaluation results show that Swift-
Parade is better suited to complex multipath routing in
comparison with existing solutions. Specifically, SwiftPa-
rade guarantees a constant proof size of 406 bytes. In con-
trast, Atlas [15] enforces a longer proof when the multipath
topology is more complex than one with 4 paths and 6 hops
per path. The proof construction and verification times of
SwiftParade can be faster than that of Atlas by 148.19× and
8.28×, respectively.

In summary, we make the following major contributions
to multipath validation.

• We identify a vulnerability of packet loss due to burst
arrivals in multipath validation.

• We propose SwiftParade as the first solution toward
anti-burst multipath validation. It gains a leap of
efficiency by aggregation validation. Packets from
different paths can be simultaneously validated.

• We propose a two-factor encryption scheme to de-
fend against the second residual module attack.

• We implement SwiftParade using DPDK and evalu-
ate its performance through extensive experiments.
SwiftParade offers a high communication efficiency
via a constant-size proof regardless of path length
and path number. The aggregate validation tech-
nique enables SwiftParade outperform the state-of-
the-art multipath validation solution in terms of an
order of magnitude faster validation.

The rest of the paper is organized as follows. Section 2
identifies the vulnerability of bursty traffic to multipath val-
idation and motivates an aggregate validation technique as
mitigation. Section 3 presents SwiftParade as the first solu-
tion for anti-burst multipath validation. Section 4 details the
design strategies. Section 5 and Section 6 prove SwiftParade
security and evaluate its performance in comparison with
the state-of-the-art solution, respectively. Section 7 reviews
and distinguishes related work from SwiftParade. Finally,
Section 8 concludes the paper.

2 MOTIVATION

In this section, we identify an intrinsic challenge for multi-
path validation. Parallel transmissions in multipath routing
tend to induce burst arrivals on converging routers. Without
being validated fairly fast, such bursty traffic may overflow
input queues and cause packet losses. This motivates us to
explore an aggregate validation technique that can simul-
taneously validate packets from different incoming paths.

Aggregate validation offers a leap of efficiency by no longer
trapping in a single packet-path binding per validation
operation as in existing solutions.

2.1 Packet Loss upon Burst Arrivals

We perform a qualitative analysis of the susceptibility of
packet loss due to burst arrivals in multipath validation.
In particular, we focus on potential packet losses on con-
verging routers due to burst transmissions. A packet loss
occurs when the input queue on a router is full and can
hold no more incoming packets. Given a queue holding up
to Q packets, whether the number Q′ of incoming packets
exceeds queue capacity depends on how fast the router
processes a packet. Let T denote the processing time per
packet. The faster T can be, the fewer packets can be stuck
in the queue before the router processes them. During the
time span of T , the number of newly arrived packets along a
single path is B

S ×T , where B and S represent bandwidth of
a path and size of a packet, respectively. Now let us take into
account of the multipath effect. Given a number N of paths
for multipath routing toward a converging router, we can
derive the maximal number P of incoming packets while
the router processes a packet in T as the following:

P =
B
S
× T ×N .

Definition 1. Packet loss susceptibility ∆: Given queue size
Q, processing time T , path bandwidth B, packet size S , and path
number N , a converging router is susceptible to packet loss if the
indicator of packet loss susceptibility ∆ is set as 1. We define ∆
as follows.

∆ =

{
0, if Q−P = Q− B

S × T ×N ≥ 0,
1, if Q−P = Q− B

S × T ×N < 0.
(1)

By Equation 1, packet loss susceptibility increases with
processing time, path bandwidth, and path number while
decreasing with packet size. Figure 1 shows the number of
newly arrived 1000-byte packets with varying processing
time, path bandwidth, and path number. Consider a com-
mon queue size of 140 [34]. Queue size Q allocated to N
paths ranges from 140 to 140N depending on granularity of
queue sharing among input ports. 140 corresponds to an ex-
treme case when all theN input ports share the same queue.
140N lies in the other extreme where each input port fea-
tures with an individual queue. When the number of newly
arrived packets in Figure 1 exceeds Q, packet losses may
occur. In other words, queue sizeQ puts an implicit limit on
bandwidth. Consider Atlas [15]—state-of-the-art multipath
validation—for example. It takes about 6 µs to process a
packet. Queue size of 140∼140N limits Atlas bandwidth as
23.33 Gbps (Figure 1(a) when N = 1), 11.67∼23.33 Gbps
(Figure 1(b) when N = 2), 5.83∼23.33 Gbps (Figure 1(c)
when N = 4), and 3.89∼23.33 Gbps (Figure 1(d) when
N = 6). This means that Atlas can only guarantee non-
occurrence of packet loss with bandwidth below 23.33 Gbps
when N = 1, below 11.67 Gbps when N = 2, below
5.83 Gbps when N = 4, and below 3.89 Gbps when N = 6.
Once bandwidth exceeds these thresholds, packet losses
become possible; packet losses are bound to happen when
bandwidth exceeds 23.33 Gbps. Since the thresholds for



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, 2023 3

Processing Time ( s)
012345678910

Ban
dw

idt
h (

Gbp
s)

0
10

20
30

40
50

Pa
ck

et
 n

um
be

r

0
400
800
1200
1600
2000

(a) 1 Path

Processing Time ( s)
012345678910

Ban
dw

idt
h (

Gbp
s)

0
10

20
30

40
50

Pa
ck

et
 n

um
be

r

0
400
800
1200
1600
2000

(b) 2 Path

Processing Time ( s)
012345678910

Ban
dw

idt
h (

Gbp
s)

0
10

20
30

40
50

Pa
ck

et
 n

um
be

r

0
400
800
1200
1600
2000

(c) 4 Path

Processing Time ( s)
012345678910

Ban
dw

idt
h (

Gbp
s)

0
10

20
30

40
50

Pa
ck

et
 n

um
be

r

0
400
800
1200
1600
2000

(d) 6 Path

Fig. 1: Number of 1,000-byte packets received by a router with varying processing time, bandwidth, and path number.

packet-loss likability decrease with path number, multipath
validation is more susceptible to packet posses due to burst
arrivals.

2.2 Aggregate Validation
To make multipath validation robust against burst arrivals,
we are motivated to explore aggregate validation. We expect
that a feasible aggregate validation technique can simulta-
neously validate a group of packets instead of an individual
one. It should satisfy the following three properties in prac-
tical networks using multipath routing.
Property 1: Inclusive validation. Existing path validation
solutions enforce exclusive validation in that they process
only a single packet per operation. In contrast, aggregate
validation advocates an inclusive fashion. Such inclusive-
ness shows in two aspects. First, a validation operation is
no longer limited to only a single packet. It takes effect
over a group of packets. Second, the group of packets under
validation need not be limited to the same forwarding path.
They could have arrived from different incoming paths.
Property 2: Dynamic routing. We need to embrace also
flexibility of path choices in multipath routing. A typical
line of multipath routing protocols dynamically splits traffic
across allowed paths at each hop [26], [27], [28], [29], [30].
This optimizes usage of all available path resources and
parallelizes traffic transmission in order to minimize the
propagation delay of the entire group of traffic. However,
existing single-path validation solutions assume a fixed
packet-path binding along the entire forwarding process.
They can hardly be adapted to efficient multipath valida-
tion. The state-of-the-art multipath validation—Atlas [15]—
still uses single-path validation primitives (i.e., OPT [7]). It
essentially treats multipath validation as a combination of
single-path validation and optimizes efficiency by, for exam-
ple, avoiding repeated validation of overlapping segments
over different paths.
Property 3: Constant-size proof. From the implementation
point of view, validation proofs should be crafted to ease ag-
gregate validation. Most existing path validation solutions
use proofs with size linearly increasing with path length.
Following the wisdom in various cryptography algorithms,
it might be quite challenging to simultaneously operate on
a group of proofs with different lengths. We thus explore
cryptography primitives to offer constant-size proofs re-
gardless of path length.

We design an aggregate validation technique with all
the preceding properties satisfied and implement it through
SwiftParade. Table 1 compares SwiftParade with both

TABLE 1: Comparison of properties that different solutions
satisfy ✓, partially satisfy ✓*, and unsatisfy ✗.

Solution Scenario Property

Multipath
Validation

Inclusive
Validation

Dynamic
Routing

Constant-
Size Proof

ICING [6] ✗ ✗ ✗ ✗
OPT [7] ✗ ✗ ✗ ✗

OSV [8], [9] ✗ ✗ ✗ ✗
PPV [10] ✗ ✗ ✗ ✓

Atomos [11] ✗ ✗ ✗ ✓
EPIC [12] ✗ ✗ ✗ ✗

PSVM [13] ✗ ✗ ✓* ✗
MASK [14] ✗ ✗ ✗ ✓

Atlas [15] ✓ ✗ ✓ ✗
VALNET [16] ✓ ✗ ✓ ✗
SwiftParade ✓ ✓ ✓ ✓

Dynamic Path: RS→R0→R1→R3→R4→RD

                                           RS→R0→R2→R3→R4→RD

Diverging Router: RS ,R0

7 5 3 1

4 2 0

6

4 0

6 2

4 0

6 2

7 5 3 1

7 1

5 3
5 3

7 1

Diverging Router: RS , R6

Dynamic Path: RS→R5→R6→R7→R9→RD

          RS→R5→R6→R8→R9→RD

4 2 06
7 5 3 1

4 2 06

4 2 0

6

7 5 3 1

4 2 06
7 5 3 1

R5

R0

R2

R1

R3

R7

R8

R6 R9

R4

RS RD

Fig. 2: Example topology of multipath routing.

single-path and multipath validation solutions. SwiftParade
stands for the first solution that supports aggregate vali-
dation. Our aggregate validation can efficiently and simul-
taneously validate a group of packets likely from different
incoming paths. It enables SwiftParade to suit more for anti-
burst multipath validation.

3 OVERVIEW

In this section, we first define the system and adversary
models for SwiftParade. We then highlight the key design
principles for anti-burst multipath validation. We will detail
the design strategies in Section 4.

3.1 System Model
Figure 2 illustrates the system model of our anti-burst
multipath validation scheme. Without loss of generality,
we consider an excerpt topology out of a larger network
that applies multipath routing. The topology of interest
offers four paths from the source RS to the destination RD.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, 2023 4

Packet transmission along the four paths is parallel and
dynamic toward optimizing throughput [26], [27], [28], [29],
[30]. Such two features distinguish multipath routing from
single-path routing and necessitate the anti-burst require-
ment. First, parallel transmission requires that diverging
routers forward received packets along all available paths
toward the destination. Diverging routers in Figure 2 are RS,
R0, and R6. For example, RS forwards the eight received
packets along two available paths through two 4-packet
transmissions. Note that packet-to-path allocation need not
be even; it usually depends on link status of available paths
[26], [27], [28], [29], [30]. Second, dynamic transmission re-
quires that the forwarding decision of a packet be randomly
determined at each router. In other words, no fixed packet-
path binding is enforced. This still helps to adapt packet
transmission to link status and maximizes multipath effect.

For ease of presentation, we assume that all on-path
routers have incorporated path validation functionalities.
Practical deployment usually enforces path validation on
vantage-point routers (e.g., SCIONLab [21]).

3.2 Adversary Model
As with the literature [12], we consider an active attacker
with capabilities constrained by the Dolev-Yao model [35].
Such an attacker can not only passively monitor network
traffic but also actively drop, deviate, alter, and inject
packets. It gains these capabilities through, for example,
hijacking or compromising routers. The ultimate attack goal
against path validation is to succeed validation even if a
packet has not followed a valid path. Once the attacker
succeeds, it may undesirably escalate service quality or
evade security enforcement [5], [6], [7], [12]. A successful
attack requires the attacker to forge a valid proof. The
adopted cryptographic primitives are public to both routers
and potential attackers. Secret data such as private keys are
kept proprietary to only their owning routers.

4 DESIGN

In this section, we detail and prove SwiftParade design. The
workflow lies in three key algorithms—Initialization,
Construction, and Verification. Initialization
sets up path validation via, for example, key establish-
ment and exchange among routers. Then the source follows
Construction to generate packet proofs and embed them
into packet headers before sending packets out. Upon re-
ceiving packets, a router first invokes Verification for
constructing and validating the aggregate proof of a group
of packets. It then calls Construction to integrate its own
credentials into each validated packet.

4.1 SwiftParade Principle
We develop a noncommutative homomorphic asymmet-
ric encryption scheme to fulfill aggregate validation. It is
inspired by Atomos that leverages noncommutative ho-
momorphic asymmetric encryption toward a constant-size
proof [11]. Our SwiftParade takes another leap of the ag-
gregation effect. It not only aggregates proofs from co-path
routers into a constant-size one but also aggregates such
constant-size proofs from a group of packets along different

TABLE 2: Definition of notations and abbreviations.

Notation Definition

S source node, that is, RS

D destination node, that is, RD

Φ path consisting of routers (RS , ..., Ri, ..., RD)
P the packet involving in path validation
Ri on-path router
Ai a set of predecessor routers of Ri

ri a set of aggregated packets on Ri

m the number of packets aggregated on Ri

p the prime used for modulo
g the generator of p
xi private key of Ri

yi public key of Ri

SessionID identifier of a session
T imestamp creation time of the packet
DataHash hash of the packet payload

σi proof field for Ri to deliver multisignature
ρi proof field for Ri to deliver forwarding order
ci random number selected by Ri

ui auxiliary parameter generated by Ri for verification
H(·) cryptographic hash function
π(·) recursive function to deliver validation parameters
ai identifier of router Ri

paths into one that validates forwarding correctness of all
the grouped packets. Notations and abbreviations for ease
of detailing SwiftParade are summarized in Table 2.
Noncommutative homomorphic asymmetric encryption.
We first recap necessary definitions for noncommutative ho-
momorphic asymmetric encryption proposed in [11]. Of our
major interest are two magmas (additive and multiplicative)
and a noncommutative homomorphic mapping function
constructed using the two magmas. Let p > 2 denote a large
prime number. Then we define Zp = {0, 1, ..., p − 1} and
Z∗
p = {1, 2, ..., p− 1}.

Definition 2. [11] Additive Magma (Zp−1 × Zp−1, ⋆): We
define a binary operation ⋆ as:

(a1, b1) ⋆ (a2, b2) = (a1 + a2, a1 + b1 + b2) mod (p− 1).

Definition 3. [11] Multiplicative Magma (Z∗
p × Z∗

p,⊙): We
define a binary operation ⊙ as:

(a1, b1)⊙ (a2, b2) = (a1a2, a1b1b2) mod p.

Definition 4. [11] Noncommutative Homomorphic Map-
ping Function F : (Zp−1 × Zp−1, ⋆) → (Z∗

p × Z∗
p,⊙): We

define a function F as follows:

F (a, b) = (f(a), f(b)) = (ga, gb),

where the function f : Zp−1 → Z∗
p is defined as f(x) = gx mod

p and g is a generator of Z∗
p.

Using the preceding definitions, one can construct the
basic noncommutative homomorphic asymmetric encryp-
tion scheme as follows [11].

F ((a1, b1) ⋆ (a2, b2)) = F (a1, b1)⊙ F (a2, b2).

Aggregate validation. We now present our construction of
noncommutative homomorphic asymmetric encryption that
supports aggregate validation. The construction embodies
the following three designs. Note that we sketch only key
design principles here and provide more implementation
details in Section 4.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, 2023 5

• First, how to construct packet proofs for inclusive valida-
tion?
We integrate path flexibility into a constant-size
packet proof. More specifically, when router Ri com-
putes its proof (σ̃i, ρ̃i) for a packet, it no longer
simply considers the only previous hop the packet
has traversed. Instead, Ri takes into account all the
allowed previous hops (denoted as set Ai) for the
packet. The construction of (σ̃i, ρ̃i) is as follows:

(σ̃i, ρ̃i) = (σ̃Ai
, ρ̃Ai

) ⋆ (σi, ρi), (2)

where σ̃Ai
=

∑
a∈Ai

σ̃a and ρ̃Ai
=

∑
a∈Ai

ρ̃a.
• Second, how to aggregate proofs over a group of packets?

Let (σj
Ai
, ρjAi

) denote the proof of the jth packet in a
set ri of m packets on router Ri. We aggregate proofs
over the set of packets as follows.

(σ̃ri , ρ̃ri) = (σ̃rAi
, ρ̃rAi

) ⋆ (σri , ρri), (3)

where

σ̃rAi
=

m∑
j=1

σ̃j
Ai
,

ρ̃rAi
=

m∑
j=1

ρ̃jAi
,

σri =
m∑
j=1

σj
Ai
, ρri =

m∑
j=1

ρjAi
.

• Third, how to verify the aggregate proof to simultaneously
validate forwarding correctness of the entire set of packets?
Following the preceding construction principles and
subsequent design specifics in Section 4, we validate
an aggregated proof (σ̃ri , ρ̃ri) if it satisfies the fol-
lowing equation.

F (σ̃ri , ρ̃ri) = F (σ̃rAi
, ρ̃rAi

)⊙ F (σri , ρri). (4)

We will prove the correctness of our validation
scheme in Section 4.4.

4.2 Initialization
Initialization aims to establish and exchange keys
among routers (Algorithm 1). It first initializes a modulo
and a generator for function f used by the noncommutative
homomorphic mapping function in Definition 4 (lines 3-
5). Note that we use a composite number N = p′ × p′′

Algorithm 1: SwiftParade Initialization

1 Function Initialization:
2 //step 1: generator generation
3 p′, p′′ ← large random prime numbers;
4 g ← a generator of p′;
5 N = p′p′′;
6 //step 2: key generation
7 for each router Ri do
8 x′

i, x
′′
i ← random prime numbers;

9 yi ← gx
′
i+x′′

i mod N ;

10 //step 3: key exchange
11 Router Ri sends (Ri, yi) to other routers;

Algorithm 2: SwiftParade Construction

1 Function Construction:
2 if router Ri is the source then
3 SessionID← identifier of the current session;
4 Timestamp← creation time of the packet

with payload P ;
5 DataHash← H(P );
6 //construction of SwiftParade Proof
7 h = DataHash||SessionID||Timestamp;
8 G = H(SessionID);
9 c′1, c

′′
1 ← random numbers from Zp′−1, Zp′′−1;

10 σ′
1 ← x′

1 + c′1(
∏m

j=1 H(h)j)G mod (p′ − 1);
11 σ′′

1 ← x′′
1 + c′′1(

∏m
j=1 H(h)j)G mod (p′′ − 1);

12 ρ1 = σ1 ← σ′
1 + σ′′

1 ;
13 (σ̃1, ρ̃1)← (σ1, ρ1);
14 u1 ← g(c

′
1+c′′1 )(

∏m
j=1 H(h)j) mod N ;

15 π(u1) = ũ1 ← u1;
16 Proof1 ← (σ̃1, ρ̃1)||ũ1||π(u1);

17 else
18 h = DataHash||SessionID||Timestamp;
19 G = H(SessionID);
20 c′i, c

′′
i ← random numbers from Zp′−1, Zp′′−1;

21 σ′
i ← x′

i + c′i(
∏m

j=1 H(h)j)G mod (p′ − 1);
22 σ′′

i ← x′′
i + c′′i (

∏m
j=1 H(h)j)G mod (p′′ − 1);

23 ρi = σi ← σ′
i + σ′′

i ;
24 σ̃Ai

=
∑

a∈Ai
σ̃a;

25 ρ̃Ai =
∑

a∈Ai
ρ̃a;

26 (σ̃i, ρ̃i)← (σ̃Ai
, ρ̃Ai

) ⋆ (σi, ρi);
27 ui = g(c

′
i+c′′i )(

∏m
j=1 H(h)j) mod N ;

28 ũi ← (
∏

a∈Ai
ũa)ui mod N ;

29 π(ui)← (
∏

a∈Ai
π(ua))ũi mod N ;

30 Proofi ← (σ̃i, ρ̃i)||ũi||π(ui);

rather than a single prime number to defend against a
second residual module attack (Section 5.3). Similarly, we
select two large prime numbers—x′

i and x′′
i respectively

from Zp′−1 and Zp′′−1—as private keys of router Ri (line
8). Then we compute the public key yi of router Ri as
yi = f(x′

i + x′′
i ) = gx

′
i+x′′

i mod N (line 9) by Definition 4.
Following the design strategies of asymmetric key encryp-
tion, routers keep their secret keys privately and exchange
identifiers and public keys with each other (line 11).

4.3 Construction

As shown in Algorithm 2, Construction follows different
logics on the source (lines 2-16) and routers (lines 18-30)
for computing path proofs. This is mainly because that
the source has no previous hops to consider for inclu-
sive validation. Note also that the destination no longer
needs to construct proofs; it only needs to verify proofs as
Verification instructs in Algorithm 3.
Proof construction at the source. Along with the path proof,
the source also needs to embed SessionID, Timestamp, and
DataHash into the packet header (lines 3-5). These fields
ease for correlating co-session packets and verifying packet
freshness and integrity [7], [11]. Of particular emphasis
is SessionID that routers use to locally correlate packets
in a session with their designated forwarding paths [7],



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, 2023 6

[11]. It also helps to quickly filter cetain mis-forwarded
packets whose SessionID contradicts with the actual path
they traverse.

The path proof built by SwiftParade requires a two-
tuple—(σi, ρi) (lines 6-16). It follows aggregate computation
in that we construct the path proof using metadata from an
entire group of packets and then update the constructed
proof into each packet.

• The first item σi is used to prove the router identity.
Therefore, the computation of σi uses router Ri’s
secret key so that it can be verified by other routers
using Ri’s public key. Specifically, the source R1

computes σ1 as follows (lines 10-12).

σ′
1 = x′

1 + c′1(
m∏
j=1

H(h)j)G mod (p′ − 1),

σ′′
1 = x′′

1 + c′′1(
m∏
j=1

H(h)j)G mod (p′′ − 1),

σ1 = σ′
1 + σ′′

1 ,

where h = DataHash||SessionID||Timestamp guar-
antees packet integrity and distinguishes packets
with different proofs, (

∏m
j=1 H(h)j) denotes the ag-

gregation of different packets’ identity and G =
H(SessionID) acts as a fixed parameter for aggre-
gating different co-session packets.

• The second item ρi is used to track the forwarding
order along routers. It follows the same computation
process as σi (line 12). However, by integrating ρi
into the additive magma defined in Definition 2,
the noncommutativity property of our encryption
scheme guarantees that mis-forwarded packets fail
validation and get filtered.

We now augment the proof with two more fields—ũi

and π(ui)—for ease of verification on subsequent routers.
Without these two fields, subsequent routers cannot verify
(σ1, ρ1) because they relate to unknown random numbers
c′1 and c′′1 . We address this challenge by rendering c′1 and
c′′1 as a one-time secret key in the context of asymmetric
cryptography. Then we compute the corresponding public
key u1 as follows (line 14).

u1 = g(c
′
1+c′′1 )(

∏m
j=1 H(h)j) mod N,

where H(h) is included to guarantee that u1 is packet
specific as h depends on DataHash. Derived from u1 are
the two auxiliary proof fields ũ1 = u1 and π(u1) = u1 (line
15). Both will be discussed shortly about how they help the
next-hop router to verify R1’s proof in Definition 5.

Definition 5. Proof generated by the Source R1: The proof
constructed by the source R1 is defined as follows:

Proof1 = (σ̃1, ρ̃1)||ũ1||π(u1),

where we have

(σ̃1, ρ̃1) = (σ1, ρ1).

Proof construction on intermediate routers. Upon an inter-
mediate router Ri receives a set of packets, it first verifies

Algorithm 3: SwiftParade Verification

1 Function Verification:
2 //AggregateProofri is verified by Ri+1;
3 ỹri ←

∏m
j=1((

∏
a∈Ai

ỹa)yi)
j mod N ;

4 π(yri)←
∏m

j=1(
∏

a∈Ai
π(ya)ỹi)

j mod N ;
5 ũri ←

∏
a∈ri

ũa mod N ;
6 π(uri)← (

∏
a∈ri

π(ua)) mod N ;
7 left1 ← gσ̃ri mod N ;
8 right1 ← gρ̃ri mod N ;
9 left2 ← ỹri(ũri)

G mod N ;
10 right2 ← π(yri)(π(uri))

G mod N ;
11 if left1 == left2 && right1 == right2 then
12 Accept packets and update proofs;

13 else
14 Drop packets;

their aggregate proof (Section 4.4). Then Ri updates vali-
dated proofs with its own credentials. The update maintains
both the forwarding order and the constant proof size (lines
18-30). First, router Ri constructs its signature pair (σi, ρi)
as follows (lines 21-23).

σ′
i = x′

i + c′i(
m∏
j=1

H(h)j)G mod (p′ − 1),

σ′′
i = x′′

i + c′′i (
m∏
j=1

H(h)j)G mod (p′′ − 1),

ρi = σi = σ′
i + σ′′

i . (5)

Then it computes the following field (σ̃i, ρ̃i) by Equation 2
(lines 24-26).

σ̃Ai
=

∑
a∈Ai

σ̃a,

ρ̃Ai
=

∑
a∈Ai

ρ̃a,

(σ̃i, ρ̃i) = (σ̃Ai , ρ̃Ai) ⋆ (σi, ρi),

where σ̃a and ρ̃a are inherited from proofs of Ri’s predeces-
sor routers.

Ri now continues to compute the two auxiliary fields—
ũi and π(ui) as follows (lines 27-29).

ui = g(c
′
i+c′′i )(

∏m
j=1 H(h)j) mod N.

ũi = (
∏
a∈Ai

ũa)ui mod N.

π(ui) = (
∏
a∈Ai

π(ua))ũi mod N.

Definition 6. Proof generated by intermediate router Ri:
The proof constructed by an intermediate router Ri is defined as
follows:

Proofi = (σ̃i, ρ̃i)||ũi||π(ui).

4.4 Verification
Verification in Algorithm 3 presents how router Ri+1

verifies whether an aggregate proof satisfies Equation 4
(Section 4.1):

F (σ̃ri , ρ̃ri) = F (σ̃rAi
, ρ̃rAi

)⊙ F (σri , ρri).



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, 2023 7

We next prove that our construction of Verification
satisfies validity test of Equation 4 in Theorem 1. Then
we will demonstrate that such validity test can hardly be
circumvented by forged proofs in Section 5.

Lemma 1. The proof Proofi = (σ̃i, ρ̃i)||ũi||π(ui) of a packet is
valid if the following equations hold:

gσ̃i = ỹi(ũi)
G mod N, (6)

gρ̃i = π(yi)(π(ui))
G mod N, (7)

where ỹi and π(yi) are calculated the same as ũi and π(ui):

ỹi = (
∏
a∈Ai

ỹa)yi mod N, π(yi) = (
∏
a∈Ai

π(ya))ỹi mod N.

Proof. A valid proof should satisfy the following equation
(Section 4.1):

F (σ̃i, ρ̃i) = F (σ̃Ai , ρ̃Ai)⊙ F (σi, ρi). (8)

The left side of this equation can be derived as:

F (σ̃i, ρ̃i) = (gσ̃i , gρ̃i). (9)

The right side of this equation can be derived as:

F (σ̃Ai
, ρ̃Ai

)⊙ F (σi, ρi)

= (gσ̃Ai , gρ̃Ai )⊙ (gσi , gρi)

= (gσ̃Ai
+σi , gσ̃Ai

+ρ̃Ai
+ρi). (10)

To derive Equation 10 from Equation 9, we make further
derivations for the two items in the tuple. The first item is
derived as follows:

gσ̃Ai
+σi = (

∏
a∈Ai

ỹa)(
∏
a∈Ai

ũa)
Gyi(ui)

G

= ỹi(ũi)
G.

The second item is derived as follows:

gσ̃Ai
+ρ̃Ai

+ρi = (
∏
a∈Ai

ỹa)(
∏
a∈Ai

ũa)
G

(
∏
a∈Ai

π(ya))(
∏
a∈Ai

π(ua))
Gyi(ui)

G

= (
∏
a∈Ai

ỹa)yi(
∏
a∈Ai

ũa)
G(ui)

G

(
∏
a∈Ai

π(ya))(
∏
a∈Ai

π(ua))
G

= ỹi(ũi)
G(

∏
a∈Ai

π(ya))(
∏
a∈Ai

π(ua))
G

= π(yi)(π(ui))
G.

Thus, the right side of Equation 8 can be finally derived as
follows.

F (σ̃Ai
, ρ̃Ai

)⊙ F (σi, ρi) = (ỹi(ũi)
G, π(yi)(π(ui))

G)

From the preceding equations we can observe that the
validity of Equation 8 depends on that of Equation 6 and
Equation 7. This proves Lemma 1.

Theorem 1. The aggregate proof on router Ri+1 (i.e., Proofri =
(σ̃ri , ρ̃ri)||ũri ||π(uri)) is valid (i.e., satisfying Equation 4) if the
following equations hold (line 11 in Algorithm 3):

gσ̃ri = ỹri(ũri)
G mod N, (11)

gρ̃ri = π(yri)(π(uri))
G mod N, (12)

where we have

ỹri =
∏
a∈ri

ỹa mod N, (13)

ũri =
∏
a∈ri

ũa mod N, (14)

π(yri) = (
∏
a∈ri

π(ya)) mod N, (15)

π(uri) = (
∏
a∈ri

π(ua)) mod N. (16)

Proof. A valid proof should satisfy Equation 4 (Section 4.1):

F (σ̃ri , ρ̃ri) = F (σ̃rAi
, ρ̃rAi

)⊙ F (σri , ρri).

By Definition 4, the left side of Equation 4 can be derived as
follows (lines 7 and 8 in Algorithm 3).

F (σ̃ri , ρ̃ri) = (gσ̃ri , gρ̃ri ). (17)

The right side of Equation 4 can be derived as follows.

F (σ̃rAi
, ρ̃rAi

)⊙ F (σri , ρri)

= (g
σ̃rAi , g

ρ̃rAi )⊙ (gσri , gρri )

= (g
σ̃rAi

+σri , g
σ̃rAi

+ρ̃rAi
+ρri ). (18)

The second line follows Definition 4 and the third line
follows Definition 3.

The validity of Equation 4 is now narrowed down to
the equality of Formulae 17 and 18. We further derive both
items in the tuple of Formula 18 as follows.

g
σ̃rAi

+σri = g(σ̃
1
Ai

+σ̃1
i )+...+(σ̃m

Ai
+σ̃m

i )

= gσ̃
1
i+σ̃2

i+...+σ̃m
i

= ỹ1i (ũ
1
i )

Gỹ2i (ũ
2
i )

G...ỹmi (ũm
i )G (19)

= ỹri(ũri)
G, (20)

where the first and second lines follow our construction in
Section 4.1, Formula 19 follows Lemma 1, and Formula 20
is a simplified form following Equations 13 and 14 (line 9 in
Algorithm 3).

g
σ̃rAi

+ρ̃rAi
+ρri = g(σ̃

1
Ai

+ρ̃1
Ai

+ρ1
i )+...+(σ̃m

Ai
+ρ̃m

Ai
+ρm

i )

= gρ̃
1
i+...+ρ̃m

i

= π(y1i )(π(u
1
i ))

G...π(ymi )(π(um
i ))G (21)

= π(yri)(π(uri))
G, (22)

where the first and second lines follow our construction in
Section 4.1, Formula 21 follows Lemma 1, and Formula 22
is a simplified form following Equations 15 and 16 (line 10
in Algorithm 3). Therefore, Formula 17 and Formula 18 are
equal if their corresponding tuple items are equal as follows.

gσ̃ri = ỹri(ũri)
G,

gρ̃ri = π(yri)(π(uri))
G.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, 2023 8

The preceding equations are exactly enforced by Equa-
tions 11 and 12. This proves Theorem 1.

5 SECURITY

In this section, we analyze the security of SwiftParade
against an attacker under the Dolev-Yao model [35]. The
attacker can drop, deviate, alter, and inject packets (Sec-
tion 3.2). All these attacks can be relatively straightforward
to detect when no forging is involved.
Packet drop. The solution against packet-drop attacks usu-
ally leverages fault localization protocols to detect erroneous
routers [36]. It is orthogonal to path validation [7].
Packet deviation. If a packet is directed to a router that is not
supposed to be on any of the packet’s permitted paths, its
SessionID cannot match with a recorded one on the router
(Section 4.3). This enables the router to easily detect the mis-
forwarded packet.
Packet alteration. Simply altering packet data fails packet
verification. For example, an altered payload leads to a
DataHash that mis-matches with the one used for proof
construction. Alteration of any other proof fields in the
packet header also fails packet verification (Algorithm 3).
Packet injection. Without the attempt to forging proofs,
the attacker may inject packets by replaying captured valid
packets. It is also orthogonal to path validation for defend-
ing against such a replay attack. Common countermeasures
verify TimeStamp freshness in packets [7] or record packet
history on routers [37].

However, what further complicate security guarantee of
path validation are various forging attacks. We next investi-
gate three possible forging attacks against path validation in
the literature. The analytical results show that SwiftParade
can hardly be circumvented by these forged proofs.

5.1 Brute-force Attack
We start with analyzing the most straightforward brute-
force attack. The length of path validation proofs renders
a brute-force attack negligible [11], [12]. Specifically, a valid
SwiftParade proof should be computed using correct values
of all these fields—SessionID, Timestamp, DataHash, σ̃ri ,
ρ̃ri , ũri , and π(uri). Our analysis in Section 6.1 shows that
a 390-byte proof can enable SwiftParade to guarantee a suf-
ficient security level. Then the probability of forging a valid
proof via a brute-force attack is 2−(390×8) = 2−3120. The
attacker thus needs to forge a valid proof every 23120/2 =
23119 tries on average. Such a large-scale traffic with invalid
proofs can be easily detected and mitigated as distributed
denial-of-service (DDoS) attacks [38], [39], countermeasures
against which are orthogonal to path validation.

5.2 Selective-forging Attack
Due to the infeasibility of brute-force attacks, the attacker
may seek to selectively forge key proof fields. This alter-
native is worthy of exploitation because some proof fields
are computed using other fields. Then the attacker can
take some less–path-sensitive fields (e.g., SessionID, Times-
tamp, and DataHash already in plaintexts) as is and then
concentrate on only those fields requiring credentials for
computation. According to Thoerem 1, the attacker can try

to achieve so by selectively forging σ̃ri and ũri . Let σ́ri and
úri denote the respective forged fields.

Next, we show that the attacker can hardly forge selec-
tive proof fields in a polynomial time. Given a generator
g, a composite number N , a public key yi of router Ri,
and a valid proof Proofi−1 = (σ̃ri−1

, ρ̃ri−1
)||ũri−1

||π(uri−1
)

generated by its previous honest router Ri−1, we consider
the following forged proof.

´Proofi = (σ́ri , ρ́ri)||úri ||π́(uri).

We now follow proof by contradiction. If σ́ri and úri can be
forged in a polynomial time, ρ́ri and π́(uri) can be easily
computed as ρ́ri = ρ̃ri−1

+ σ́ri and π́(uri) = π(uri−1
)× úri ,

respectively. By Theorem 1, σ́ri and úri should satisfy the
following condition:

gσ́ri = ỹri(úri)
G. (23)

Since σ́ri should be incremented from the known parameter
σ̃ri−1

(Equation 3), we denote σ́ri as σ́ri = σ̃ri−1
+ α and

derive the preceding condition as follows.

gσ́ri = gσ̃ri−1
+α = ỹri−1

(ũri−1
)Ggα. (24)

Following Equation 23 and Equation 24, we further derive
the subsequent equations for α to satisfy.

(úri)
G = (yri)

−1(ũri−1)
Ggα. (25)

α = logg(
úri

ũri−1

)Gyri . (26)

The attacker accordingly has two ways for proof forging.
Neither of both ways is exploitable.

• By Equation 25, given an arbitrary forged value of
úri , if α can be quickly solved, the attacker can
therefore further forge σ́ri as well as other fields.
However, solving α in Equation 25 resembles a dis-
crete logarithm problem (DLP) in Equation 26 that
has no polynomial-time solution [40]. This renders
σ́ri and thus the entire proof hardly forgeable in a
polynomial time.

• The attacker may turn to directly forge σ́ri .
Then we can derive α = σ́ri − σ̃ri−1

and
(úri)

G = (yri)
−1(ũri−1)

Ggα by Equation 25. How-
ever, α and úri should satisfy α =

∑m
j=1 σ

j
i =∑m

j=1(x
j
i + cjiH(hj

i )G) (Section 4.1) and úri =

ũri−1
g
∑m

j=1 cjiH(hj
i ) (Section 4.4), respectively. To sat-

isfy these requirements, the attacker needs to solve
random value ci and private key xi given forged
α and úri . This calls for DLP solutions again and
prohibits the attacker from forging valid proofs in a
polynomial time.

5.3 Quadratic-residue Attack
A recent quadratic-residue attack tries to circumvent path
validation by exploiting a vulnerability of ElGamal en-
cryption [31] used in proof Construction (Algorithm 2).
Specifically, the exploited vulnerability exists if there exists
a quadratic residue modulo N . An integer q is a quadratic
residue modulo N if there exists an integer x such that
x2 ≡ q mod N . A possible q can be efficiently found if



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, 2023 9

TABLE 3: Validation-field size (in byte) of SwiftParade un-
der an 80-bit security level.

Field Size Field Size

Total 406 σ̃ri 63
DataHash 16 ρ̃ri 63
SessionID 4 ũri 128

Timestamp 4 π(uri ) 128

N is either a prime number or can be easily factorized
into several prime numbers [31]. Once a quadratic residue
modulo N is found, it enables the attacker to forge a valid
proof with a probability greater than 1/4 [31].

To secure SwiftParade against the quadratic-residue at-
tack, we construct N as a composite number of two primes
(p′ × p′′) instead of a single prime number (Section 4.2).
Such a countermeasure is motivated by the fact that the
attacker has to factorize a composite N for computing
quadratic residues [31]. This resembles a prime factorization
problem (PFP) that has no polynomial time solution [41].
For example, general number field sieve (GNFS)—known
as the fastest algorithm for factoring a large composite num-
ber in number theory—holds a computation complexity of
O(e1.9

3√lgN3
√

(lg lgN)2) [42].

6 EVALUATION

In this section, we implement and evaluate SwiftParade
using DPDK [33] in comparison with Atlas [15]. We run
SwiftParade on two 4-core server with Intel Xeon Platinum
8369B CPUs (3.5 GHz) and 8 GB memory. Performance eval-
uation focuses on path validation overhead in terms of com-
munication and computation. Extensive results demonstrate
that SwiftParade offers higher efficiency and applicability
for multipath validation.

6.1 Validation-Field Size
We start with measuring the communication overhead of
SwiftParade in terms of validation-field size. As shown in
Table 3, SwiftParade introduces seven fixed-size validation
fields to a packet header. The sizes of DataHash, SessionID,
and Timestamp follow common setups in the literature. For
the remaining four fields, their sizes are determined by the
security level as follows. The dynamic rekeying technique
suggested in [11] demonstrates that an 80-bit security level
is sufficient. It does not necessarily enforce the conventional
128-bit security level because key setups in path validation
may not have to be fixed. Once keys are re-established,
accumulated attack efforts targeting at obsolete keys are
immediately vanished. We next analyze the sizes of fields
dependent on the security level.

• σ̃ri is the summation of σ̃i, while σ̃i is the aggrega-
tion result of σi. Let log2 σi denote the length of σi.
According to Equations 2, 3, and 5, the length of σi

is bounded by log2 ciH(h)G+ log2 i+ log2 m. Given
that i denotes the index of an on-path router and
m denotes the number of aggregated packets, they
are upper bounded by the path length and queue
size, respectively. We conservatively consider an ex-
tremely long path with 4,096 routers, each of which
with a sufficiently large queue size of 4,096. The

Path Length 24681012

Path
 N

um
be

r

246810121416

V
al

id
at

io
n-

Fi
el

d 
Si

ze
 (b

yt
e)

0

1000

2000

3000

(a) SwiftParade

Path Length 24681012

Path
 N

um
be

r

246810121416

V
al

id
at

io
n-

Fi
el

d 
Si

ze
 (b

yt
e)

0

1000

2000

3000

(b) Atlas

Fig. 3: Proof size of SwiftParade and Atlas [15] with varying
path number and path length.

size of σ̃ri can be estimated as log2 ci + log2 H(h) +
log2 G+24 bits, where log2 ci, log2 H(h), and log2 G
are determined by the security level. Moreover, ci
represents a private key and both H(h) and G are
hash values. Given an 80-bit security level, the upper
bound on the size of σ̃ri is (160 + 160 + 160 + 24)
bits = 63 bytes.

• ρ̃ri shares the same computation logic as σ̃ri . There-
fore, its size is also 63 bytes given the same security
level.

• ũri and π(uri) are both computed using the modulo
base N . Their lengths are thus upper bounded by the
length of N . To satisfy an 80-bit security level, N is
1,024-bit long [43]. Therefore, the lengths of both ũri

and π(uri) are 1,024 bits (i.e., 128 bytes).

In summary, the length of extra header fields by SwiftParade
is 406 bytes under an 80-bit security level (Table 3). Note that
it is constant regardless of path number and path length.

In contrast, the communication overhead of Atlas in-
creases with both path number and path length. The size
of Atlas validation fields is estimated as [15]:

16(m(n− 1)− (k − 1)) + 18(m+ k) + 36 (bytes),

where m is path number, n is path length, and k is the
number of diverging routers in the multipath topology.
Such a high complexity ofO(mn) significantly increases the
communication overhead of Atlas in complex topologies.

Figure 3 compares SwiftParade with Atlas in terms of
communication overhead under various topologies. Swift-
Parade associates with a constant overhead while Atlas
leads to a higher overhead as path number or path length
increases. SwiftParade starts to outperform Atlas when the
topology becomes complex. Consider the topology in Fig-
ure 2 for example—4 paths with 6 routers on each path
and 3 diverging routers. Atlas introduces 418 bytes of val-
idation fields while SwiftParade requires only 406 bytes.
Furthermore, Atlas may become ineffective when topology
complexity becomes moderately high (e.g., in a data center
with 1,280 routers following the fat-tree topology [44]). As
shown in Figure 3, given a multipath topology with path
number of 8 and path length of 12, Atlas necessitates 1,610
bytes of validation fields that already exceed the 1,500-byte
MTU limit. We report only Atlas statistics without MTU
limit violation for practicality in what follows.

6.2 Proof Construction
Figure 4 reports the comparison of proof construction time
per packet on the source of SwiftParade and Atlas [15]. We



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, 2023 10

Path Length 0
4

8
1216

Path
 N

um
be

r
0

4
8

12
16 C

on
st

ru
ct

io
n 

Ti
m

e 
(

s)

0
50
100
150
200
250

(a) SwiftParade

Path Length 0
4

8
1216

Path
 N

um
be

r

0
4

8
12

16 C
on

st
ru

ct
io

n 
Ti

m
e 

(
s)

0
50
100
150
200
250

(b) Atlas

Fig. 4: Construction time per packet of SwiftParade and
Atlas with varying path number and path length.

50 100 200 300 400 500 600 700
Group Size

0

1

2

3

4

5

6

V
er

ifi
ca

tio
n 

Ti
m

e 
( 

s) 5.04

3.73
2.93 2.64 2.49 2.39 2.37 2.31

SwiftParade

Fig. 5: Verification time per packet of SwiftParade with
varying group size.

measure the average construction time over 10,000 packets.
SwiftParade can construct proofs extremely fast because it
only computes the identification of the source rather than
all the on-path routers into the proof. This offers a con-
stant construction time of 9.13 µs per packet (Figure 4(a)).
However, Atlas needs to calculate proofs for every router
in the multipath topology (Section 2.2). This results into
an O(mn) computation complexity, where m denotes path
number and n denotes path length. The proof construction
time of Atlas thus increases with path number and path
length (Figure 4(b)). For example, given a 6-path multipath
topology, the proof construction time of Atlas is 58.95 µs and
200.19 µs when path length is 6 and 12, respectively. When
path number increases to 10, the proof construction time
per packet by Atlas increases by 48.96% given path length
of 6. Longer paths make Atlas inapplicable to multipath
validation due to MTU violation.

6.3 SwiftParade Verification with Varying Group size

Prior to comparing the proof verification time of SwiftPa-
rade and Atlas, we first evaluate how group size affects
SwiftParade in terms of verification speed. Group size quan-
tifies the number of packets that SwiftParade can process
in one round of aggregate validation. Figure 5 shows the
average verification time per packet with varying group
size. The more packets are aggregated into a group, the
less verification time is needed per packet in the group.
When group size increases from 50 to 400, the verification
time decreases from 5.04 µs to 2.49 µs, offering a 50.60%
speedup. Note that both path length and path number do
not affect the efficiency of SwiftParade as the only related
parameter involved in aggregate validation is the packet
number (Algorithm 3).

2 6 10 12 15
Path Number

0

1

2

3

4

5

V
er

ifi
ca

tio
n 

Ti
m

e 
(

s)

2.70 2.67 2.59 2.60 2.63

3.57 3.58

A
tla

s:
 b

ey
on

d 
M

TU
 li

m
it

A
tla

s:
 b

ey
on

d 
M

TU
 li

m
it

A
tla

s:
 b

ey
on

d 
M

TU
 li

m
it

SwiftParade Atlas

Fig. 6: Verification time per packet of SwiftParade and Atlas
with 10-hop paths and varying path number.

6.4 Proof Verification with Varying Path Number
We now measure the verification time of SwiftParade in
comparison with that of Atlas. We start with the evaluation
configuration with a fixed path length of 10 and varying
path number. We use each path to transfer 150 packets
to emulate burst arrivals (Section 2.1). According to the
evaluation results with varying group size in Figure 5, we
set the group size as 300 as verification speedup tends
to cease upon larger group sizes. Figure 6 compares the
average verification time per packet under varying path
numbers. Once path length is fixed, both SwiftParade and
Atlas deliver relatively constant verification time per packet
regardless of path number. SwiftParade outperforms Atlas
with a 1.35× speedup.

6.5 Proof Verification with Varying Path Length
We continue to measure the verification time with varying
path length. The number of multi-paths is set as 6 (Figure 6).
Similarly, we send 150 packets along each path to emulate
burst arrivals and group 300 packets on routers for aggre-
gate validation. Figure 7 reports the average verification
time per packet by SwiftParade and Atlas. SwiftParade
remains a constant validation speed about 2.12 µs as its
computation only relates to the inputs from the previous-
hop routers (Section 4.4). In contrast, the verification time
of Atlas increases with path length because the PVF field it
re-computes requires inputs from all the upstream routers.
Furthermore, the number of Atlas proof fields increases with
path length. This also increases the time for routers to locate
the specific proof for verification. For example, Atlas takes
1.94 µs for verifying a packet given a path length of 6. The
verification time increases by 82.59% when path length in-
creases to 12. In summary, SwiftParade starts outperforming
Atlas as path length exceeds 6 and the advantage expands
with path length. For example, SwiftParade has a 1.42×
speedup in comparison with Atlas when path length is 10.
The speedup increases to 1.67× when path length is up to
12.

6.6 Proof Processing Time
Finally, we measure the total proof processing time. The con-
stitution of processing time varies across different routers.
According to Algorithm 2, the source router process proofs
via only Construction. The intermediate routers first
verify proofs via Verification (Algorithm 3) and then
update proofs via Construction (Algorithm 2) for val-
idated packets. The destination router only needs to verify



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, 2023 11

2 6 10 12 15
Path Length

0

1

2

3

4

5

6
V

er
ifi

ca
tio

n 
Ti

m
e 

(
s)

2.12 2.12 2.12 2.12 2.12

0.90

1.94

3.02
3.53

A
tla

s:
 b

ey
on

d 
M

TU
 li

m
it

SwiftParade Atlas

Fig. 7: Verification time per packet of SwiftParade and Atlas
with 6 variable-length paths.

Source Intermediate Destination
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pr
oc

es
si

ng
 T

im
e 

(
s/

by
te

-o
f-

pa
yl

oa
d)

(a) 6-path * 12-hop/path

Intermediate Destination
0.00

0.01

0.02

0.03

SwiftParade-Construction SwiftParade-Verification Atlas-Construction Atlas-Verification

Source Intermediate Destination
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pr
oc

es
si

ng
 T

im
e 

(
s/

by
te

-o
f-

pa
yl

oa
d)

(b) 8-path * 10-hop/path

Intermediate Destination
0.00

0.01

0.02

0.03

Source Intermediate Destination
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pr
oc

es
si

ng
 T

im
e 

(
s/

by
te

-o
f-

pa
yl

oa
d)

(c) 10-path * 8-hop/path

Intermediate Destination
0.00

0.01

0.02

0.03

Source Intermediate Destination
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pr
oc

es
si

ng
 T

im
e 

(
s/

by
te

-o
f-

pa
yl

oa
d)

(d) 12-path * 6-hop/path

Intermediate Destination
0.00

0.01

0.02

0.03

Fig. 8: Proof processing time per byte of payload of SwiftPa-
rade and Atlas with varying path number and path length.
For each chosen path number, path length is set as the
largest one that leads to no MTU violation for Atlas.

proofs via Verification (Algorithm 3). However, we find
that it is unfair for SwiftParade to simply estimate the
average proof processing time per packet. This is because
SwiftParade introduce shorter proofs than Atlas does. Given
the same number of packets, SwiftParade likely carries way
more payloads. Therefore, we turn to evaluate the average
processing time per byte of payload and reports the com-
parison results of SwiftParade and Atlas in Figure 8. The
routing topology is set with varying paths and hops per
path. Given a path number, we choose the maximum path
length that does no violate the MTU limit for Atlas. The
group size is set as 300 following the preceding experiments.
Source router. The proof processing time of SwiftParade
on the source is constant as 0.0083 µs/byte-of-payload. In
contrast, the processing time of Atlas depends on routing
topology specifics (Section 6.2). For example, with 12 paths
and 6 hops per path (Figure 8 (d)), the payload per packet
supported by Atlas is up to 1,500 − 1,234 = 266 bytes,
where 1,234 corresponds to the length of Atlas proofs. In
this case, the processing time of Atlas is 0.39 µs/byte-of-
payload. When path number is 8 and each path has 10 hops
(Figure 8 (b)), the processing time of Atlas is 1.23 µs/byte-
of-payload, being 148.19× slower than that of SwiftParade.
Intermediate router. SwiftParade constinues to deliver
constant-time processing on intermediate routers simply

because every router performs the same computation
(Verification in Algorithm 3 and Construction in
Algorithm 2). It takes 0.0025 µs/byte-of-payload to verify
proofs and 0.0083 µs/byte-of-payload to update proofs.
Thus, the total proof processing time of SwiftParade on
an intermediate router is 0.0110 µs/byte-of-payload. As for
Atlas, its verification time is determined by path length
(Section 6.5). The update time is as constant as 1.07 µs.
Besides, since proof size of Atlas is not constant (Section 6.1),
the payload size varies with path number and path length
that decide proof size. Specifically, the proof processing time
of Atlas is 0.0073 (verification) + 0.0040 (construction) =
0.0113 µs/byte-of-payload with 12 paths and 6 hops each
(Figure 8 (d)). When the routing topology features with 6
paths and 12 hops each (Figure 8 (a)) and with 8 paths and
10 hop each (Figure 8 (b)), the processing time of Atlas is
0.0164 µs/byte-of-payload and 0.0280 µs/byte-of-payload,
respectively. Respective levels of slowdown in comparison
with SwiftParade are 32.93% and 60.71%.
Destination router. The proof processing time of SwiftPa-
rade on the destination is also faster than that of Atlas.
The processing time of Atlas ranges from 0.0073 µs/byte-
of-payload (Figure 8 (d)) to 0.0207 µs/byte-of-payload
(Figure 8 (b)). In contrast, SwiftParade constantly takes
0.0025 µs/byte-of-payload, being 2.92×∼8.28× faster than
Atlas.

7 RELATED WORK

In this section, we review related solutions and under-
line how our SwiftParade contributes atop them toward
anti-burst multipath validation. Existing path validation
schemes can be divided into two categories according to
their application scenarios—single-path validation and mul-
tipath validation. Single-path validation enforces a strict
binding between a packet and a specific forwarding path.
Multipath validation allows packet forwarding along any
one of a set of designated paths.

7.1 Single-path Validation

Single-path validation solutions needs to compute proofs
using a priori knowledge about the exactly single specified
path for a packet. They thus cannot apply to networks with
parallel and dynamic multipath routing, unsatisfying the
multipath scenario listed in Table 1. We next review typical
single-path validation solutions.

Early path validation solutions tend to trade off secu-
rity for efficiency. As the pioneer path validation solution,
ICING [6] enforces the strongest security assumption that
each node needs to verify all its upstream nodes and
compute proofs for all its downstream nodes. Such heavy
computation limits its efficiency. To improve efficiency, OPT
[7] assumes a trusted source that can pre-compute various
proof fields for on-path routers. Routers then need to only
verify and update proofs. Following similar primitives,
EPIC [12] further simplifies the computation and decreases
proof size. All these solutions adopt symmetric encryption
and associate each router with a specific proof, resulting in
an O(n) storage complexity. This renders them lack of the
property of constant-size proof in Table 1.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, 2023 12

Toward constructing constant-size proofs, Atomos [11]
uses asymmetric encryption instead. It aggregates proofs
of each router into one single proof field. However, due to
the relatively slow asymmetric encryption, Atomos is more
suitable for networks with long forwarding paths.

When security guarantee needs not be limited to every
path segment per packet, there have been more alternative
solutions aiming at high efficiency. For example, OSV [8], [9]
replaces the traditional cryptographic computation such as
message authentication code (MAC) with a Hadamard ma-
trix. The simplicity of matrix computation enables OSV to
be much faster than those cryptographic solutions. PPV [10]
proposes a probabilistic validation scheme that no longer
requires a packet be verified by only one path segment as
well as by the destination. Similarly, MASK [14] empowers
the source to designate an intermediate router to generate
a proof for the specified packet. Then the packet embedded
with the proof is only verified at the destination.

All the preceding solutions target at networks with static
paths. However, once the routing policy changes, routers
have to drop packets in forwarding since their proofs still
correspond to the on-path routers specified by the obsolete
routing policy. PSVM [13] aims to adapt to dynamic routing
by introducing a trusted agent called Credible Guaran-
tee Agent (CGA). CGA informs the corresponding router
with the new routing decision and issues the newly pre-
computed proofs to replace the carried proofs in the packet
header. This strategy relies on a trusted authority, which
weakens the security assumption. Besides, there is a delay
in the arrival of the newly-calculated proof to the router.
This renders PSVM less suitable for complex and dynamic
networks.

7.2 Multipath Validation

Recent studies start to focus on multipath validation that
allows a packet to switch among multiple allowed paths
during transmission [15], [16]. As the first attempt toward
multipath validation, Atlas [15] proposes a hierarchical vali-
dation technique to compress proofs of multiple paths. Paths
are split into segments. Proofs for overlapping segments
on multiple paths are computed only once. The follow-
up privacy-preserving solution—VALNET [16]—leverages
chameleon hash [45] to hide hop indices of routers on a
certain path. This, however, involves additional computa-
tion and communication overhead. We in this paper present
SwiftParade toward a more efficient multi-path validation
solution in comparison with Atlas. We consider exploring
further improvements regarding privacy protection as VAL-
NET for future work.

8 CONCLUSION

We have presented SwiftParade as the first attempt toward
anti-burst multipath validation. Existing solutions enforce
packet-wise validation; their validation overhead is im-
posed equally on every single packet. This renders them
less applicable to multipath routing where bursty traffic be-
comes a norm. Such bursty traffic arises from simultaneous
incoming packets along multiple forwarding paths toward

the same router. Without an effective way to improve val-
idation efficiency, bursty traffic tends to overload valida-
tion resources and leads to packet losses. We explore an
aggregate validation technique to fundamentally improve
validation efficiency. Specifically, it simultaneously validates
a group of packets from different paths. The entire group of
packets can be validated as long as each packet follows any
regulated path. Then the validation overhead is amortized
across packets of the same group instead of being equally
imposed on each packet. To implement the aggregate vali-
dation technique, we develop a noncommutative homomor-
phic asymmetric encryption scheme. Extensive theoretical
and evaluation results demonstrate that SwiftParade out-
performs the state-of-the-art multipath validation solution.

ACKNOWLEDGMENTS

We would like to sincerely thank the Editors and Reviewers
of IEEE Transactions on Dependable and Secure Computing
for your review efforts and helpful feedback. We also wish
you health and safety during the pandemic. The work is
supported in part by National Natural Science Foundation
of China under Grant No. 62172358, National Key R&D Pro-
gram of China under Grant No. 2022YFB3104800 and Grant
No. 2020AAA0107705, National Natural Science Foundation
of China under Grant No. 62032021, Zhejiang Key R&D
Plan under Grant No. 2019C03133, Leading Innovative and
Entrepreneur Team Introduction Program of Zhejiang under
Grant No. 2018R01005, Alibaba-Zhejiang University Joint
Institute of Frontier Technologies, and Research Institute of
Cyberspace Governance in Zhejiang University.

REFERENCES

[1] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang,
and P. Mittal, “Raptor: Routing attacks on privacy in tor,” in
USENIX Security Symposium, 2015, pp. 271–286.

[2] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mittal,
“Bamboozling certificate authorities with {BGP},” in USENIX
Security Symposium, 2018, pp. 833–849.

[3] L. D. Amini, A. Shaikh, and H. G. Schulzrinne, “Issues with
inferring internet topological attributes,” in Internet Performance
and Control of Network Systems III, vol. 4865. International Society
for Optics and Photonics, 2002, pp. 80–90.

[4] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman,
M. Latapy, C. Magnien, and R. Teixeira, “Avoiding traceroute
anomalies with paris traceroute,” in SIGCOMM, 2006, pp. 153–
158.

[5] K. Bu, A. Laird, Y. Yang, L. Cheng, J. Luo, Y. Li, and K. Ren,
“Unveiling the mystery of internet packet forwarding: A survey of
network path validation,” ACM Computing Surveys, vol. 53, no. 5,
pp. 1–34, 2020.

[6] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and
A. Seehra, “Verifying and enforcing network paths with icing,”
in CoNEXT, 2011, pp. 1–12.

[7] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Per-
rig, “Lightweight source authentication and path validation,” in
SIGCOMM, 2014, pp. 271–282.

[8] H. Cai and T. Wolf, “Source authentication and path validation
with orthogonal network capabilities,” in INFOCOM WKSHPS,
2015.

[9] ——, “Source authentication and path validation in networks
using orthogonal sequences,” in ICCCN, 2016, pp. 1–10.

[10] B. Wu, K. Xu, Q. Li, Z. Liu, Y.-C. Hu, M. J. Reed, M. Shenk,
and F. Yang, “Enabling efficient source and path verification via
probabilistic packet marking,” in IWQoS, 2018, pp. 1–10.

[11] A. He, K. Bu, Y. Li, E. Chida, Q. Gu, and K. Ren, “Atomos:
Constant-size path validation proof,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 15, pp. 3832–3847, 2020.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. XX, 2023 13

[12] M. Legner, T. Klenze, M. Wyss, C. Sprenger, and A. Perrig, “Epic:
Every packet is checked in the data plane of a path-aware inter-
net,” in USENIX Security Symposium, 2020, pp. 541–558.

[13] F. Yang, K. Xu, Q. Li, R. Lu, B. Wu, T. Zhang, Y. Zhao, and
M. Shen, “I know if the journey changes: Flexible source and path
validation,” in IWQoS, 2020, pp. 1–6.

[14] S. Fu, K. Xu, Q. Li, X. Wang, S. Yao, Y. Guo, and X. Du, “Mask:
Practical source and path verification based on multi-as-key,” in
IWQoS, 2021, pp. 1–10.

[15] L. Ma, K. Bu, N. Wu, T. Luo, and K. Ren, “Atlas: A first step toward
multipath validation,” Computer Networks, vol. 173, p. 107224,
2020.

[16] B. Sengupta, “Valnet: Privacy-preserving multi-path validation,”
Computer Networks, vol. 204, p. 108695, 2022.

[17] X. Yang, D. Clark, and A. W. Berger, “Nira: a new inter-
domain routing architecture,” IEEE/ACM Transactions on Network-
ing, vol. 15, no. 4, pp. 775–788, 2007.

[18] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cot-
ton, M. J. Freedman, A. Haeberlen, Z. G. Ives, A. Krishnamurthy
et al., “The nebula future internet architecture,” in The Future
Internet Assembly, 2013, pp. 16–26.

[19] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and
D. G. Andersen, “Scion: Scalability, control, and isolation on next-
generation networks,” in S&P. IEEE, 2011, pp. 212–227.

[20] D. Barrera, L. Chuat, A. Perrig, R. M. Reischuk, and P. Szala-
chowski, “The scion internet architecture,” Communications of the
ACM, 2017.

[21] J. Kwon, J. A. Garcı́a-Pardo, M. Legner, F. Wirz, M. Frei,
D. Hausheer, and A. Perrig, “Scionlab: A next-generation internet
testbed,” in ICNP, 2020, pp. 1–12.

[22] IETF, “Multipath tcp (mptcp),” 2020. [Online]. Available:
https://datatracker.ietf.org/wg/mptcp/documents/

[23] I. Cidon, R. Rom, and Y. Shavitt, “Analysis of multi-path routing,”
IEEE/ACM transactions on Networking, vol. 7, no. 6, pp. 885–896,
1999.

[24] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” Tech.
Rep., 2000.

[25] M. Besta, M. Schneider, M. Konieczny, K. Cynk, E. Henriksson,
S. Di Girolamo, A. Singla, and T. Hoefler, “Fatpaths: Routing in
supercomputers and data centers when shortest paths fall short,”
in SC, 2020, pp. 1–18.

[26] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the
tightrope: Responsive yet stable traffic engineering,” in SIG-
COMM, 2005, pp. 253–264.

[27] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“Cope: Traffic engineering in dynamic networks,” in SIGCOMM,
2006, pp. 99–110.

[28] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” ACM SIGCOMM Computer
Communication Review, vol. 37, no. 2, pp. 51–62, 2007.

[29] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it flow:
Resilient asymmetric load balancing with flowlet switching,” in
NSDI, 2017, pp. 407–420.

[30] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the character-
istics and origins of internet flow rates,” in SIGCOMM, 2002, pp.
309–322.

[31] Y. Wu, C. Jiang, C. Xu, and K. Chen, “Security analysis of a path
validation scheme with constant-size proof,” IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 4246–4248, 2021.

[32] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE Transactions on Information
Theory, vol. 31, no. 4, pp. 469–472, 1985.

[33] DPDK: Data Plane Development Kit,. [Online]. Available:
http://dpdk.org/

[34] M. M. Hamdi, S. A. Rashid, M. Ismail, M. A. Altahrawi, M. F.
Mansor, and M. K. AbuFoul, “Performance evaluation of active
queue management algorithms in large network,” in ISTT, 2018,
pp. 1–6.

[35] D. Dolev and A. Yao, “On the security of public key protocols,”
IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198–208,
1983.

[36] C. Basescu, Y.-H. Lin, H. Zhang, and A. Perrig, “High-speed inter-
domain fault localization,” in IEEE S&P, 2016, pp. 859–877.

[37] T. Lee, C. Pappas, A. Perrig, V. Gligor, and Y.-C. Hu, “The case for
in-network replay suppression,” in AsiaCCS, 2017, pp. 862–873.

[38] J. Mirkovic, G. Prier, and P. Reiher, “Attacking DDoS at the
source,” in ICNP, 2002, pp. 312–321.

[39] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mech-
anisms against distributed denial of service (ddos) flooding at-
tacks,” IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp.
2046–2069, 2013.

[40] W. Diffie and M. E. Hellman, “New directions in cryptography,” in
Secure Communications and Asymmetric Cryptosystems. Routledge,
2019, pp. 143–180.

[41] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for
obtaining digital signatures and public key cryptosystems,” in
Secure Communications and Asymmetric Cryptosystems. Routledge,
2019, pp. 217–239.

[42] A. K. Lenstra, H. W. Lenstra, M. S. Manasse, and J. M. Pollard,
“The number field sieve,” in The Development of the Number Field
Sieve. Springer, 1993, pp. 11–42.

[43] A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key
sizes,” Journal of Cryptology, vol. 14, no. 4, pp. 255–293, 2001.

[44] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 4, pp. 63–74, 2008.

[45] H. Krawczyk and T. Rabin, “Chameleon hashing and signatures,”
Cryptology ePrint Archive, 1998.


