
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 1

Hummingbird: Dynamic Path Validation with
Hidden Equal-Probability Sampling

Anxiao He, Xiang Li, Jiandong Fu, Haoyu Hu, Kai Bu* Member, IEEE, Chenlu Miao and Kui Ren Fellow, IEEE

Abstract—Path validation has already been incrementally de-
ployed in the Internet architecture. It secures packet forwarding
by enabling end hosts to negotiate specific forwarding paths and
enforcing on-path routers to prove their forwarding behaviors
along these paths. Most existing path validation solutions target
static paths, paying less attention to fully dynamic paths that sup-
port flexible routing. In this paper, we present Hummingbird as
the first validation solution over fully dynamic paths. It features a
hidden equal-probability sampling technique. Gaining efficiency
via routers probabilistically sampling packets to validate, we craft
the sampling probability such that each router validates a similar
amount of packets given an unknown path length. We further
hide the state of whether a packet has been sampled and validated
using a lightweight, non-cryptographic scheme. This prevents
attackers from differentiating and selectively mis-forwarding
packets. We validate security and efficiency of Hummingbird
through both theoretical proof and experimental evaluation.

Index Terms—Path validation, dynamic routing, hidden equal-
probability sampling.

I. INTRODUCTION

As a fundamental feature for future secure Internet [1]–[3],
path validation has already been incrementally deployed [4]. It
enforces packet forwarding along designated paths and verifies
whether packets actually follow the paths meanwhile [5]. In
comparison with traditional forwarding that is transparent to
end hosts, path validation can effectively mitigate various
attacks such as re-routing [6], BGP hijacking [7], and packet
tampering [8], [9]. There have a series of initiative path-aware
Internet architectures to advocate path validation—NIRA [10],
NEBULA [11], and SCION [1], [2]. The essential design
strategy is to require that on-path routers add their proofs
in packet headers [5], [12]–[19]. Then routers can use such
proofs to validate packet forwarding, that is, which routers a
packet has traversed and in what order. Recently, SCIONLab
[4] has deployed various routers supporting path validation

A. He, J. Fu, and K. Bu* are with the College of Computer Sci-
ence and Technology, Zhejiang University, Hangzhou 310027, China, and
are also with ZJU-Hangzhou Global Scientific and Technological Innova-
tion Center, Hangzhou 311215, China. E-mail: {zjuhax, jiandongfu, kaibu
kuiren}@zju.edu.cn

X. Li is with the School of Cyberspace Science, Harbin Institute of
Technology, Harbin 150001, China. E-mail: 21S003076@stu.hit.edu.cn

H. Hu and C. Miao are with the College of Computer Science and Tech-
nology, Zhejiang University, Hangzhou 310027, China. E-mail: {3180103843,
clmiao}@zju.edu.cn

K. Ren is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou 310027, China, and is also with the Zhejiang Provin-
cial Key Laboratory of Blockchain and Cyberspace Governance, Hangzhou
310027, China. E-mail: kuiren@zju.edu.cn

*Corresponding Author: Kai Bu.
EDICS: NET-SPRO Security protocols.

around the globe. It provides an absolute stimulus for adoption
and practise of path validation.

However, existing path validation solutions focus mostly
on static paths and do not apply to fully dynamic paths.
Static path validation solutions (e.g., ICING [5], OPT [12] and
EPIC [14]) drop packets once they discover route deviation.
This limits their agility to adjust forwarding paths when, for
example, network congestion or malicious routers need be
avoided [20]–[24]. It is practically necessary to investigate how
to enforce path validation while dynamically diverting packets
among multiple allowed paths. A fully dynamic path raises
two specific challenges for path validation. First, routers can
flexibly adjust routing policies according to real-time network
status [20]–[24]. This brings more freedom for routers to
forward packets and offers them more chances to respond
more quickly upon unforeseen situations where the network
topology changes. Second, given the possibility of switching
to different forwarding paths, it is even hard to predict the
exact length of the actually taken forwarding path from the
source to the destination. Both challenges of unknown path
and length render existing solutions infeasible for dynamic
path validation.

In this paper, we take on the challenge and present Hum-
mingbird as the first dynamic path validation solution. Inspired
by PPV [13], we use probabilistic sampling toward efficient
validation of packets over fully dynamic paths. However,
the sampling scheme in PPV requires a known path length
as a critical parameter that achieves secure sampling. We
leverage the reservoir sampling technique [25] to design an
equal-probability sampling over a dynamic path with unknown
path length. Specifically, it guarantees that the probability of
a packet being sampled by a router yet not by any of its
downstream routers be identical. Only with such an equal
probability can we guarantee that attackers cannot select a
router with a low probability of sampling to selectively at-
tack. Furthermore, we design a lightweight non-cryptographic
scheme to protect the sampling indicator in packet headers.
Again, such a hidden sample state prevents selective attacks
from distinguishing whether a packet is sampled and will be
verified in the next hop.

We implement Hummingbird as well as a non-sampling
Baseline using the Click router [26]. Hummingbird outper-
forms Baseline in terms of packet processing speed and net-
work throughput, being more efficient as path length increases.
To better understand the efficiency scale of Hummingbird in a
well accepted context, we also use state-of-the-art static path
validation solutions—PPV [13] and EPIC [14]—as references.
First, the overhead of Hummingbird header fields is 101 bytes

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 2

irrespective with path length; while the state-of-the-art sam-
pling based solution—PPV [13]—imposes a 64-byte header
overhead. Second, Hummingbird can achieve a throughput
of 1.48 Gbps given a single-core machine with a 10 Gbps
link. This comparative to the state-of-the-art high-speed EPIC
[14], which yields a throughput of 1.71 Gbps in the same
experimental setting.

In summary, we make the following major contributions to
path validation.

• We present Hummingbird as the first solution that can ef-
ficiently validate packet forwarding along dynamic paths
with unknown path length.

• We design an equal-probability sampling technique with-
out path length as a priori. We further explore a
lightweight, non-cryptographic scheme to hide the in-
dicator bit of whether a packet has been sampled and
needs to be verified. Both strategies prevent attackers
from distinguishing sampled and unsampled packets and
thus prevent them from selectively attacking packet for-
warding, to which the state-of-the-art probabilistic PPV
is vulnerable [13].

• We implement Hummingbird using the Click router [26]
and DPDK [27] and validate its security and efficiency
through extensive experiments. It can preserve the hidden
equal-probability sampling property and achieve a com-
parative throughput to the state-of-the-art path validation
solutions.

The rest of the paper is organized as follows. Section II
models dynamic path validation and underlines the necessity
of exploring a corresponding solution. Section III accordingly
presents Hummingbird as the first path validation solution that
supports fully dynamic paths. Section IV details the Hum-
mingbird design. Section V and Section VI validate security
and efficiency of Hummingbird through theoretical analysis
and experimental evaluation, respectively. Finally, Section VII
concludes the paper and indicates future work.

II. PROBLEM

In this section, we define the problem of dynamic path
validation. We then investigate the incompatibility of existing
path validation solutions to dynamic path validation.

A. System Model

Figure 1 illustrates the system model of our interest. It
follows the architecture of SCIONLab [4], a deployed path
validation platform in the Internet. SCIONLab deploys various
routers supporting path validation around the globe. Given
the deployment cost, an autonomous system (AS) may or
may not be selected. Since such SCIONLab routers enforce
path validation, we consider them trusted. In contrast, we
consider any other routers without path validation incorporated
as potentially malicious or untrusted [8], [9] (Section II-B).
Figure 1 illustrates a network that consists of a minority of
trusted routers and a majority of untrusted routers.

AS0 AS1

AS2 AS3

R0

R1

R2

UntrustedTrusted

Fig. 1: System model with routers supporting dynamic path
validation [4]. Routers R0, R1, and R2 incorporated with path
validation functions are considered trusted.
They preserve packet integrity and forwarding correctness. In

contrast, other routers may attack packet integrity and
forwarding. Routers (e.g., R0) can dynamically adjust
forwarding paths in real time to fit network status.

B. Adversary Model

As with existing solutions [5], [12]–[16], we consider an
active attacker that succeeds if it can forge a proof to pass
path validation. Specifically, any router that does not enforce
path validation in Figure 1 might be a potential attacker. The
ultimate goal of proof forging is to make a mis-forwarded
packet deemed valid. According to the requirement of path
validation, a valid packet should traverse through routers on
the designated forwarding path in the correct order. Once the
attacker bypasses an on-path router, redirects packets to a
different path, or injects a forged packet to the forwarding
path, corresponding packets should be detected and discarded.
Sophisticated attackers may collude with each other to gain
further attack leverage by, for example, correlating packet
contents. Path validation should also be robust against such
a collusion attack. We will demonstrate Hummingbird robust-
ness against various attacks in Section V. Preserving privacy
[28] is considered out of the scope.

C. Incompatibility of Existing Path Validation Solutions

Albeit dynamic path validation is comparatively critical
as static path validation, we observe that existing solutions
cannot effectively validate dynamic paths. Specifically, they
all require a priori knowledge of the entire forwarding path.
This can be easily observed from most existing solutions that
target only static paths [5], [12]–[16]. For example, ICING
[5] requires that each router beware the forwarding path it is
on such that it can provide its own credentials to downstream
routers as well as verify credentials of upstream routers toward
itself. OPT [12] and follow-up solutions [14], [15], [17]–
[19] improve efficiency through enabling a trusted source to
precompute credentials for downstream routers. In contrast
with earlier solutions, PPV [13] further boosts validation
efficiency by requiring that a packet be validated by only
two sampled adjacent routers. It uses a flow of packets to

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 3

jointly testify the forwarding correctness along the path. Packet
sampling is uniformly distributed across routers, that is, each
router samples a relatively equal amount of packets so no
router suffers from biased testification. This requires the exact
value of path length to determine the sampling probability on
each router.

Among existing solutions, Atlas [19] and PSVM [16]
embrace more than one single static path yet still do not
support fully dynamic paths. Atlas [19] initiates path validation
for networks with multipath routing. Mutipath routing allows
a forwarding path to divert. Atlas proposes a hierarchical
validation technique to compress proofs of multiple paths. The
key benefit is removing redundant proof fields of overlapping
routers on more than one path. However, it not only targets
static paths but also induces a high overhead to carry multipath
proofs in packets. PSVM [16] does not encode all multipath
proofs into packets. Instead, the source follows the initial
routing decision to encode proofs in a segment wise way. A
trusted agent from service providers called Credible Guarantee
Agent (CGA) handles dynamic routing. If a forwarding path
needs to divert, CGA informs the corresponding router with
the new routing decision. Moreover, CGA pre-computes proofs
for all segments on the new path and issues them to the
diverting router, which uses these new proofs to replace the
carried proofs in the received packets. Albeit promising higher
flexibility and efficiency than Atlas does, PSVM still requires
any adjusted path to be known prior to packet forwarding.
CGA may also be vulnerable to a single point of failure in
highly dynamic networks.

Note that path validation also shines forth in recent reliable
forwarding solutions for Software-Defined Networking (SDN)
[29]–[34]. The key difference between hardware logics on
SDN switches and Internet routers is that SDN switches rely
more on matching-then-forwarding [35]. Different from Inter-
net routers, SDN switches lack sufficient computation power
to directly support various operations enforced by existing path
validation solutions. They thus have to resort either 1) to the
controller for examining rule conflicts [29], [31], collecting
and analyzing flow statistics [30], [33] or 2) to end-hosts for
verifying forwarding correctness of received packets [32], [34].
In this paper, we concentrate on path validation in the Internet
infrastructure, where enroute routers should directly enforce
validation computation alongside packet processing.

Beyond existing path validation solutions, we take the
challenge to enforce forwarding validation over fully dynamic
paths. A fully dynamic path raises three specific challenges
for path validation. First, routers can flexibly adjust routing
policies according to real-time network status [20], [22]–
[24]. For example, R0 in Figure 1 features two possible
forwarding paths to bridge the two users. Second, packets
may be attacked while they are traversing through untrusted
routers. For example, both outgoing paths from R0 go through
untrusted routers. In corporation with other enroute trusted
routers (e.g., R1 and R2), R0 should use credentials agreed
upon among trusted routers to create a proof of sufficient
security. Third, given the possibility of switching to different
forwarding paths, it is even hard to predict the exact length
of the actually taken forwarding path from the source to

the destination. However, existing solutions usually require a
known path as a priori [5], [12]–[19] as we have discussed
in Section II-C. These challenges render them infeasible for
dynamic path validation.

III. OVERVIEW

In this section, we propose Hummingbird as the first take of
efficient validation for fully dynamic paths. It gains efficiency
via routers probabilistically sampling packets to validate. We
explore two design techniques to guarantee a hidden equal-
probability sampling.
• First, we craft the sampling probability of each router

using unknown path length such that each on-path router
validates a similar amount of packets. This makes sure
that every segment of the forwarding path can be vali-
dated.

• Second, we hide the state of whether a packet has
been sampled and validated using a lightweight, non-
cryptographic scheme. This prevents the attacker from
selectively mis-forwarding validated packets that, if not
sampled and validated again, are more exploitable to
evade path validation.

Inspired by PPV [13], Hummingbird adopts probabilistic
sampling to strive for efficient validation of packets over
fully dynamic paths. It features the following key ideas and
properties.
Applicability to flexible routing. Hummingbird is the first
lightweight solution that totally fits in a dynamic network
without having to know the forwarding path in advance.
Since the source does not need to compute assurances for
all the downstream nodes based on a specified path, routers
can choose their own next hop according to the flexible
routing policy under real time network status. This brings more
freedom for routers to forward packets and offers them more
chances to respond more quickly upon unforeseen situations
where the network topology changes.
Equal-probability sampling. Probabilistic sampling is orig-
inally proposed for boosting path validation efficiency [13].
It requires that only sampled packets be embedded with
router proofs and verified later on. Guaranteeing an equal
probability of sampling is thus critical for security. Only with
an equal probability can we guarantee that attackers cannot
select a router with a low probability of sampling to selectively
attack. For example, an attacker may manipulate packets
toward routers that unlikely sample them and evade detection.
However, given an unknown path length, it is challenging to
assign such sampling probabilities once for all.

We leverage the reservoir sampling technique [25] toward an
equal-probability sampling over a dynamic path with unknown
path length. It is a randomized algorithm that aims to select
k items from a set S containing n items, where n is a large
or unknown number. It may re-sample sampled packets. Each
router has independent sampling probability. Since path valida-
tion focuses on a single packet rather than the entire flow, the
setting is equivalent to the reservoir sampling when k = 1 with
an unknown length of router sequence. We accordingly define
the equal-probability sampling that Hummingbird supports as
follows.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 4

Fetch
Packet Ri = Src ?

SrcInitialization

EpSampling Flag = 1 ? Verification

Construction

yes

no
yes

no Pass ?

Ri = Dst ?

Update

no

yes

no

yes
DstVerification Pass ?

no

yes

Forward Packet Accept Packet

Discard Packet

Fig. 2: Hummingbird workflow.

TABLE I: Comparison of properties that different solutions
satisfy 3, partially satisfy 3∗, and do not satisfy 7.

Solution Property

Dynamic Equal-probability Hidden

ICING [5] 7 7 7
OPT [12] 7 7 7

OSV [17], [18] 7 7 7
Atomos [15] 7 7 7

Atlas [19] 7 7 7
EPIC [14] 7 7 7
PPV [13] 7 3 7

PSVM [16] 3∗ 7 7
Hummingbird (this paper) 3 3 3

Definition 1. The probability of a packet being sampled by
a router yet not by any of its downstream routers should be
identical.

Hidden sampling state. Unlike PPV that stores the sampling
address in plaintext [13], we hide the packet sampling state
about whether the packet is sampled and use a lightweight
technique to help routers verify. Packets need a header field
to indicate whether they are sampled or not [13]. Such a
field helps a router to detect a sampled packet and verify
its validation proof. It should be tamper-resistant to prevent
strategic attacks. Otherwise, the attacker may strategically mis-
forward only unsampled packets to avoid detection. Further-
more, the attacker may even modify it from a sampled state
to an unsampled state. We protect the sample state via a
lightweight keyed scheme. This prevents selective attacks from
distinguishing whether a packet is sampled and will be verified
in the next hop.

Table I compares Hummingbird with existing path valida-
tion solutions in terms of the three properties—applicability
to flexible routing, equal-probability sampling, and hidden
sampling state. Most solutions focus on static path validation.
Only PSVM [16] partially satisfies applicability to dynamic
networks because it still requires the information of the new
path upon path switching. In contrast, our Hummingbird
supports fully dynamic paths and stands out as the first solution
that satisfies all the three properties.

IV. DESIGN

In this section, we detail the Hummingbird design. We
start with a high level workflow of Hummingbird functions.
We then detail the Hummingbird header fields, followed by
how they are constructed and verified via each function with
notations and abbreviations defined in Table II. Finally, we
synthesize all these functions into the Hummingbird algorithm.

TABLE II: Definition of notations and abbreviations.

Notation Definition

Src source node
Dst destination node
Ri on-path trusted router
P the packet involving in path validation

Kij shared symmetric key between Ri and Rj

Flag packet sampling state
HiddenSample ciphertext of packet sampling state

HopCount number of nodes the packet has passed through
DataHash hash of the packet payload
SessionID identifier of a session
T imestamp creation time of the packet

V alidationProof proof field for Ri to verify
Concealment proof field for Dst to verify

H(·) cryptographic hash function
MACK(·) message authentication code using key K

PRF a pseudo random function used for sampling

A. Workflow

Hummingbird synthesizes six major processing functional-
ities on a router.
• SrcInitialization takes effect only on the source.

It initializes Hummingbird header fields.
• EpSampling decides whether a router should sample a

packet and add its credentials for the next hop to validate.
• Construction computes the aforementioned router

credentials.
• Verification verifies whether a received packet is

sampled by the previous hop and, if yes, verifies the
credentials of the previous hop.

• Update updates Hummingbird header fields for packets
that are not sampled and embedded with router creden-
tials.

• DstVerification takes effect only on the destina-
tion. It verifies a packet-specific proof generated by the
source.

Figure 2 illustrates the workflow of Hummingbird. We
sketch how it guides packet processing on the source, inter-
mediate, and destination routers as follows.
Source. The source first invokes SrcInitialization to
generate packet metadata as the packet’s initial state and
a proof for the destination. Moreover, the equal-probability
sampling design enables the source to sample every packet
(Section IV-C). The source then invokes Construction to
generate a path validation proof for the next hop to verify.
Intermediate routers. Upon receiving a packet, an interme-
diate router first invokes EpSampling to determine whether
to sample the packet. If the sample-state indicator Flag is
generated to be 1, the router invokes Construction to

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 5

generate a path validation proof for the next hop to verify.
Otherwise, it invokes Verification to verify Humming-
bird header fields. If verification succeeds, the router proceeds
with Update for updating Hummingbird header fields before
forwarding the packet to the next hop.
Destination. The destination need not sample a packet since it
has no next hop to prove to. Instead, the destination conducts
the same verification process via Verification as an
intermediate router and an additional DstVerification
for verifying the proof initialized by the source. Only if
a packet passes all verification throughout intermediate and
destination routers can it be accepted by the destination as
valid.

B. Hummingbird Header Structure

We introduce the header fields for Hummingbird to validate
dynamic paths between the IP and TCP headers. This design
philosophy follows the tradition of exiting path validation
solutions [5], [12]–[15]. The major reason is because that
validation fields and IP header fields together drive the for-
warding process. Appending validation fields right after the
IP header facilitates packet parsing. As shown in Figure 3, the
Hummingbird header consists of seven fields. Four of them—
SessionID, Timestamp, DataHash, HopCount—are not crypto-
graphically protected; they need be computed into some or all
the other three keyed fields—HiddenSample, ValidationProof,
Concealment.
SessionID, Timestamp, and DataHash define packet meta-
data and stay constant across routers, following the design of
existing solutions.
• SessionID represents the identifier of a communication

session. It is synchronized by the source and destination
at the begging of a session.

• Timestamp records the generation time of a packet at
the source. It helps routers verify packet freshness and
mitigate replay attacks [12].

• Datahash is the hash value of the packet payload. It is
used for integrity check.

HopCount records the number of routers that the packet
has traversed and is incremented hop by hop. It is a critical
parameter for deriving equal-probability sampling albeit with
unknown length of a dynamic path (Section IV-C).
ValidationProof. If a router decides to sample a packet, it
computes its packet-spefic credentials into ValidationProof for
the next hop router to verify (Section IV-E).
HiddenSample. Packets need a header field to indicate
whether they are sampled or not [13]. Such a field helps a
router to detect a sampled packet and verify its Validation-
Proof. It should be tamper-resistant to prevent strategic attacks
(Section IV-D). Otherwise, the attacker may strategically mis-
forward only unsampled packets to avoid detection. Further-
more, the attacker may even modify it from a sampled state
to an unsampled state.
Concealment. Finally, we introduce the Concealment field for
the destination to verify packet integrity in case a packet and
corresponding DataHash are altered after its last verification.
Specifically, Hummingbird requires that a sampled packet be

HiddenSample DataHash

SessionID

TimeStamp

HopCount Packet
Metadata

Validation
Proof Concealment

IP Header

Hummingbird

TCP Header

Fig. 3: Hummingbird header structure.

Algorithm 1: Equal-Probability Sampling
1 Function EpSampling:
2 Flag ← 0;
3 if Ri is the destination then
4 break;

5 ρ← PRF (0, HopCount);
6 //PRF generates a random integer ∈ [0, HopCount];
7 if ρ == HopCount then
8 Flag ← 1;

9 return Flag;

verified immediately on the next hop router. Any alteration
over the packet can be detected upon verification of the
ValidationProof field. However, if the verified packet is never
sampled again, the additional Concealment field should help
the destination to verify packet integrity. It is accordingly
computed as a MAC value of packet metadata using the shared
key of the source and destination (Section IV-H).

C. Equal-Probability Sampling

We leverage the reservoir sampling technique [25] toward an
equal-probability sampling over a dynamic path with unknown
path length. As Algorithm 1 shows, the sampling function
EpSampling is effective yet simple. It takes only HopCount
as the input. The output is a single-bit indicator called Flag.
If EpSampling returns 0 for Flag, the corresponding router
need not sample the packet to embed ValidationProof. Oth-
erwise, if Flag is set as 1, the router computes and adds its
credentials to the ValidationProof field (Section IV-E). The
assignment of Flag depends on the value of the random integer
ρ generated by PRF (line 5). Only when ρ is equal to
HopCount is Flag set as 1.

Although HopCount appears to have the same functionality
as the time-to-live (TTL) field that records the number of
routers traversed by a packet, it cannot be replaced by TTL.
The main purpose of HopCount field is acting as a parameter
in Algorithm 1 to achieve the equal-probability sampling. As
required by the reservoir sampling algorithm [25], sampling
towards an unknown size needs a positive incremental pa-
rameter. However, TTL is a decreasing parameter. It is only
applicable as a sampling parameter when the path length
is known and fixed [13]. Furthermore, one may consider to
choose the time that a packet receives by each enroute router
as a readily available positive incremental parameter. However,
it is not as stable as the hop-count number since such times
of receipt can be easily affected by network congestion and
packet processing speed.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 6

Theorem 1. Hummingbird using Algorithm 1 can guarantee
the property of equal-probability sampling in Definition 1.

Proof. Without loss of generality, assume that upon the packet
reaches the destination, the full path consists of N routers
with the source and destination inclusive. Let Pn denote the
probability of the nth router sampling the packet. On the nth
router, HopCount is equal to n−1. The probability of ρ being
equal to n−1 is 1/((n−1)−0+1) = 1/n (line 5). Therefore,
the probability of Flag being set as 1 (i.e., Pn) is equal to 1/n
(lines 7-8). According to Definition 1, the equal probability
property focuses on the probability of a packet being sampled
by a router yet not by any of its downstream routers. We can
accordingly calculate such probability for the nth router as
follows:

Pn ·
N∏

k=n+1

(1− Pk) =
1

n
·

N∏
k=n+1

(1− 1

k
)

=
1

n
·

N∏
k=n+1

(
k − 1

k
)

=
1

n
· n

n+ 1
· n+ 1

n+ 2
· · · N − 1

N

=
1

N
.

Once the dynamic path ends up being an N -hop path, the
equal sampling probability can be guaranteed as 1/N . This
proves Theorem 1.

D. Hidden Sample State

We protect the exact value of Flag via a keyed hash—
HiddenSample. The construction function of HiddenSample
should satisfy the following properties:
• For the same packet, HiddenSample should vary per hop

regardless of the value of Flag.
• For different packets in the same flow, the values of their

HiddenSample should be different and uncorrelated on
the same router even if they have identical Flag.

Both properties guarantee that the attacker cannot infer the
value Flag by correlating HiddenSample of the same packet
across routers or of different packets on the same router.
A straightforward solution is to use a MAC using the
shared key between adjacent routers (e.g., Ki(i+1) shared
by router Ri that samples the packet and its next hop
router Ri+1) and taking Flag and DataHash as inputs—
MACKi(i+1)

(Flag||DataHash). Ki(i+1) varies per path seg-
ment and helps satisfy the first property. DataHash varies with
packet per se and helps satisfy the second property. However,
we observe that we do not necessarily use computations as
complex as MAC to protect Flag.

Instead, we adopt a lightweight keyed hash to construct
HiddenSample as follows.

HiddenSample = H(Flag||DataHash||HopCount||Ki(i+1)).

We include HopCount as the input because its integrity
should also be protected. Otherwise, the attacker may tamper

with HopCount to breach equal-probability sampling (Sec-
tion IV-C).

We now analyze the security of our HiddenSample design.
First, we append the shared key as a suffix to prevent the
length extension attack possible when the key used as a
prefix [36], [37]. Second, HiddenSample is robust against
hash collision. Through a hash collision attack, the attacker
aims to forge some or all of Flag, HopCount, and DataHash
without knowing the key Ki(i+1), given a specific value of
HiddenSample to satisfy. Given an n-bit hash result, a brute-
force attack requires O(2n) trials to find a pair of inputs
with the same hash result while the faster Birthday attack
takes O(2n/2) [38]. In comparison with finding any pair of
collided inputs, it should be harder to find a specific message
(Flag||DataHash||HopCount||Ki(i+1)) such that its hash
result is collided with a given HiddenSample. Consider a
256-bit HiddenSample (Section VI). It requires more than
O(2256/2) = O(2128) trials to forge HiddenSample through a
hash collision attack. This is commonly deemed as impractical
for an attacker.

We use only one round of computation and comparison of
HiddenSample to cover three possible cases (i.e., Flag = 0,
Flag = 1, and altered packet). Upon received a packet, a router
Ri recovers the hidden sample state by first calculating:

HiddenSample′ = H(0||DataHash||HopCount||K(i−1)i).

If HiddenSample’ matches the carried HiddenSample in the
received packet, router Ri makes sure that the packet is
not sampled by its previous hop and need not verify the
ValidationProof field. Otherwise, either the packet is sampled
by Ri−1 (i.e., Flag = 1) or altered (e.g., in fields of Flag,
DataHash, or HopCount) in between Ri−1 and Ri, router Ri

proceeds with verifying ValidationProof (Section IV-E).

E. Validation Proof

If a router samples a packet, it computes ValidationProof
following existing schemes [39].

V alidationProof

= MACKi(i+1)
(Metadata||HopCount||Concealment),

where Metadata = SessionID||Timestamp||DataHash. We dis-
cuss how such a design of ValidationProof can reveal packet
mis-forwarding and tampering along with its verification pro-
cess.

A router verifies ValidationProof if it determines that Flag
is not equal to 0 (Section IV-D). To verify the integrity
of packet payload, the router first recomputes the hash of
the received payload and compares with DataHash. If they
do not match, the payload may have been modified and
the packet is discarded. Otherwise, the router continues to
compute ValidationProof′ as follows:

V alidationProof ′

= MACK(i−1)i
(Metadata||HopCount||Concealment).

If ValidationProof′ is equal to ValidationProof, verification
succeeds. Otherwise, verification fails and the packet is dis-
carded.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 7

F. Verification

If a router does not sample a packet, it needs to verify
the carried ValidationProof if the packet is unsampled by the
previous hop. The router first uses the HiddenSample field to
verify whether this is so (as in Section IV-D). If the packet
is not unsampled in the previous hop (i.e., Flag ! = 0),
then the router verifies the ValidationProof field as detailed
in Section IV-E.

G. Update

If a router samples a packet, it updates Hummingbird
header fields before forwarding the sampled packet as follows
(Section IV-D, IV-E):

HopCount = HopCount+ 1,

HiddenSample = H(1||DataHash||HopCount||Ki(i+1)),

V alidationProof

= MACKi(i+1)
(Metadata||HopCount||Concealment).

If a router does not sample a packet or compute its cre-
dentials into ValidationProof (Section IV-E), it should also
update various Hummingbird header fields before forwarding
the packet to the next hop. This mainly aims to prevent packet
correlation and guarantee the hidden sample state. Moreover,
if the router decides to verify the packet’s ValidationProof
(Section IV-F), update follows verification. Specifically, the
update process targets the following three fields:

HopCount = HopCount+ 1,

HiddenSample = H(0||DataHash||HopCount||Ki(i+1)),

V alidationProof = 128-bit random value.

Of particular emphasis is updating ValidationProof with a
random value. We make it appear as random even if it is
not computed as for a sampled packet in Section IV-E. If it
remains unchanged, the attacker notices this by correlating the
packet before and after it traverses the router. An unmodified
ValidationProof reveals that the packet is not sampled on the
router. This violates our goal of hiding the sample state via
HiddenSample. Since ValidationProof of an unsampled packet
need not be verified on the next hop, we therefore guarantee
its randomness simply using a fast-to-generate random value
yet without sacrificing correctness.

H. Hummingbird Algorithm

Finally, we wrap up Hummingbird design with an algo-
rithmic synthesis of the aforementioned functions. Together
with Algorithm 1, Algorithm 2 formalizes Hummingbird-
enabled router functionalities in Figure 2. EpSampling
(Algorithm 1), Construction, Verification, and
Update (lines 8-31 in Algorithm 2) are detailed in Sec-
tion IV-C∼Section IV-G, respectively. We now complement
them with how the source initiates path validation over a
packet (i.e., SrcInitialization), how the intermediate
trusted routers process the packet (i.e., Construction,
Verification, and Update), and how the destination
finally accepts the packet (i.e., DstVerification).

Algorithm 2: Hummingbird Validation Functions
1 Function SrcInitialization:
2 //assume shared key Kij between Ri and Rj ;
3 DataHash ← H(payload);
4 SessionID ← identifier of the current session;
5 T imestamp ← creation time of packet;
6 Metadata← DataHash||SessionID||T imestamp;
7 Concealment ← MACK0n(Metadata);

8 Function Construction:
9 HopCount← HopCount+ 1;

10 HiddenSample
← H(1||DataHash||HopCount||Ki(i+1));

11 V alidationProof ←
MACKi(i+1)

(Metadata||HopCount||Concealment);

12 Function Verification:
13 HiddenSample′

← H(0||HopCount||DataHash||K(i−1)i);
14 if HiddenSample′ ! = HiddenSample then
15 DataHash′ ← H(payload);
16 if DataHash′ == DataHash then
17 δ =Metadata||HopCount||Concealment);
18 V alidationProof ′ ← MACK(i−1)i

(δ);
19 if V alidationProof ′ == V alidationProof

then
20 Flag ← 0;
21 Update;

22 else
23 Discard the packet;

24 else
25 Discard the packet;

26 else
27 Update;

28 Function Update:
29 HopCount← HopCount+ 1;
30 HiddenSample

← H(0||HopCount||DataHash||Ki(i+1));

31 V alidationProof
$←− {0,1}128;

32 Function DstVerification:
33 DataHash′ ← H(payload);
34 Metadata′ ← DataHash′||SessionID||T imestamp;
35 Concealment′ ← MACK0n(Metadata′);
36 if Concealment′ == Concealment then
37 Accept the packet;

38 else
39 Discard the packet;

SrcInitialization runs on the source and instantiates
packet metadata and source signature. Specifically, packet
metadata consists of SessionID, Timestamp, and DataHash
(lines 3-6 in Algorithm 2). Then the source signs Metadata
using its shared key K0n with the destination with CMAC
[40] (line 7):

Concealment = MACK0n
(Metadata).

Concealment simultaneously validates packet integrity (Data-
Hash) and freshness (SessionID and Timestamp) as well as
source authenticity (K0n).
Construction, Verification, and Update run on

intermediate trusted routers. They are responsible for the

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 8

validation management. Once a router receives a packet, it first
invokes EpSampling to check whether the packet is sam-
pled. If the returned result shows that the packet is sampled,
Construction is invoked to generate a new proof using
the router’s credential. Otherwise, Verification starts to
verify the carried proof. Once the verification succeeds, the
router executes Update to update the proof.
DstVerification runs on the destination and builds the

last defense against packet modification and injection (lines
33-39 in Algorithm 2). It first recomputes DataHash, atop of
which Concealment is recomputed. The destination accepts
the packet only of the recomputed Concealment matches that
carried in the packet.

V. SECURITY

In this section, we analyze Hummingbird security against
the Dolev-Yao model [41]. It is a commonly used adversary
model by existing path validation solutions [5], [12], [14].
Specifically, the attacker can observe, drop, inject, replay, and
forward or alter packets.

A. Proof Unforgeability
A major security goal of path validation should guarantee

that the attacker can hardly forge a valid proof. In our
Hummingbird design, protected proof fields include Hidden-
Sample, ValidationProof, and Concealment. We use SHA3-256
[42] to compute HiddenSample and CMAC [43] to compute
ValidationProof and Concealment. The security of these fields
thus depend on the security of SHA3-256 and CMAC.

Theorem 2. Hummingbird proofs protected by SHA3-256 and
CMAC can hardly be forged by a probabilistic polynomial-
time-bounded attacker.

Proof. We have already demonstrated HiddenSample secu-
rity by robustness of SHA3-256 against hash collision in
Section IV-D. We hereby demonstrate security of Valida-
tionProof and Concealment through computation hardness
to crack CMAC [44]. Without knowing shared keys among
routers, the attacker has to forge proofs via brute-force attacks.
The probability of forging a valid 128-bit ValidationProof or
Concealment is 2−128, while the probability of forging both
is down to 2−256. Take the fastest supercomputer—Fugaku—
with a speed of 442 PFLOP/s as example [45]. Even if it can
complete one trial per FLOP, it still requires 4.2×1051 years to
brute-force 2256 trials on average. This would be impractically
time-consuming for the attacker.

B. Packet Alteration
The attackers may directly modify packet payloads as they

can hardly forge proof fields in the packet header. After
modifying the payload of a packet, the attacker needs to
recompute DataHash and replace the original one to evade
integrity check on intermediate routers. It is possible that a
modified packet will not be sampled and verified on inter-
mediate routers again. However, we also compute DataHash
into Concealment that must be verified on the destination. By
Theorem 2, Concealment with a modified DataHash cannot
hardly be forged by the attacker.

C. Packet Injection

The attacker may inject a forged packet or replayed packet
to routers. Hummingbird is secure against both types of
injection attacks.
• To forge a packet from scratch, the attacker has to forge

its corresponding Hummingbird header fields such as
HiddenSample, ValidationProof, and Concealment. With-
out knowing the involved secret key, the attacker can
hardly forge these fields by Theorem 2.

• The attacker may also resort to replaying a captured
valid packet [46]. Replayed packets can be detected
using packet Timestamps [12]. Specifically, Timestamp
records the creation time of a packet and thus represents
packet freshness. If the time gap between Timestamp
and the current time exceeds a threshold, the packet
is considered obsolete and discarded. Furthermore, we
include Timestamp in the computation of proof fields
such as HiddenSample and ValidationProof. The attacker
cannot forge HiddenSample and ValidationProof with a
tampered Timestamp either.

D. Packet Deviation

When the attacker deviates a packet to a different path
than enforced, the deviated can be deemed as either injected
or forged. In either case, the deviated packet can be easily
detected and discarded (Section V-A∼Section V-C)

VI. EVALUATION

In this section, we evaluate the performance of Humming-
bird through extensive experiments. The results demonstrate
that Hummingbird can guarantee an equal-probability sam-
pling over dynamic paths with unknown length. It can process
packets fairly fast and achieve a comparative throughput to the
state-of-the-art static path validation solution. The overhead of
Hummingbird header fields is 101 bytes irrespective with path
length. Hummingbird can achieve a throughput of 1.48 Gbps
given a single core and of 8.24 Gbps given four cores with a
10 Gbps link. Such Hummingbird performance is comparative
to that of state-of-the-art static path validation solutions.

A. Methodology and Settings

We implement Hummingbird using the Click router [26]. To
measure the throughput, we directly connect two machines fol-
lowing the design of OPT [12] and EPIC [14]. Each machine
uses an Intel i7-9700 CPU (3.00 GHz) with an Ubuntu 18.04
operating system. We use Intel AES-NI hardware instructions
[47] to accelerate cryptography computation. Since Humming-
bird is the only path validation solution that supports fully
dynamic paths (Table I), we derive a non-sampling baseline out
of Hummingbird for efficiency comparison. Specifically, the
baseline solution follows the design philosophy in Section IV
without including HiddenSample. It thus enables routers to
always verify proofs in the received packets and contruct
proofs of their own for the next hop to verify.

The evaluation aims to answer the following questions:

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 9

Router Index
109876543210Path Length

6 8 10 12

Sa
m

pl
e

C
ou

nt

0

500

1000

1500

2000

Fig. 4: The number of packets out of 10,000 sampled on a
router yet not on its downstream routers with varying path
length.

• Can Hummingbird achieve an equal-probability sampling
of packets?

• Can Hummingbird leverage probabilistic sampling toward
being practically efficient?

B. Sampling Probability

We have proved that Hummingbird can guarantee an equal-
probability sampling by Theorem 1. Given P packets over an
N -hop path, the number of packets sampled by a router yet
not by its downstream routers approximates as P/(N−1). The
destination does not participate in sampling. Figure 4 shows
the number of such packets out of 10,000 test packets with
varying path length. The key observation is that for any path
length, sample counts are uniformly distributed across different
hops. Consider the 6-hop path for example. The expected
sample count in theory should be 10000/(6− 1) = 2000. The
collected statistics for sample counts are {2020, 1993, 1998,
2014, 1975}, well matching with the theoretical distribution.

C. Proof Size

We measure the communication overhead of Hummingbird
in terms of proof size. We expect fields to be as concise as
possible so that packets can carry more payloads. Table III
shows the size of each Hummingbird field detailed in Sec-
tion IV-B under a 128-bit security level. As with Baseline,
Hummingbird guarantees a constant proof size regardless of
payload size and path length. We include the PPV as state-
of-the-art constant-size–proof design as well. Hummingbird
has a proof size of 101 bytes, in comparison with 69 bytes for
Baseline and 64 bytes for PPV. The major size difference arises
from the additional HiddenSample field that Hummingbird
introduces to hide the sample state. Albeit Hummingbird needs
a relatively longer proof than Baseline does, it outperforms
Baseline in processing delay, throughput, and the ultimate
goodput. We next report corresponding comparison results.

D. Processing Speed per Function

Packet processing on a Hummingbird router involves
six functions—SrcInitialization, EpSampling,
Construction, Verification, Update, and

TABLE III: Proof size (in byte) comparison under a 128-bit
security level.

Field Solution

Hummingbird Baseline PPV

HiddenSample 32 / /
HopCount 1 1 /
DataHash 16 16 /
SessionID 16 16 16
Timestamp 4 4 16 (FlowID)

Concealment 16 16 16 (MVF)
ValidationProof 16 16 32 (Others)

Total 101 69 64

DstVerification (Section IV). SrcInitialization
and DstVerification run on only the source and the
destination, respectively. EpSampling runs on the source
and intermediate routers. If they EpSampling returns 1, they
further invoke Construction for generating validation
proofs. Otherwise, they invoke Update for randomizing the
validation proof and hiding the sample state. Verification
runs on the intermediate and destination routers for verifying
Hummingbird header fields. Verification accordingly
splits into two sub-functions. One uses HiddenSample to
verify whether a packet is sampled by the previous hop (line
13 in Algorithm 2). If yes, the other uses ValidationProof
to verify the proof of the previous hop (lines 14-27 in
Algorithm 2).

We measure the average processing speed of each function
using 100,000 packets each with 1,000-byte payload. Table IV
reports the measurement results in comparison with Baseline.
For SrcInitialization, Update, Verification of
ValidationProof, and DstVerification that have similar
functionalities in Baseline, Hummingbird yields a faster pro-
cessing. In contrast, EpSampling, Construction, and
Verification of HiddenSample exist only in Humming-
bird, with no counterpart in Baseline. EpSampling and
Verification of HiddenSample are fairly fast, taking
0.26 + 1.68 = 1.94 × 10−7 seconds. Construction takes
5.61 × 10−7 seconds. Although Construction is a bit
slower, it takes effect only when EpSampling returns Flag
= 1 with a low probability. We do not showcase the measure-
ments with varying path length and payload size as packet
processing time is insensitive to them (Section VI-C).

E. Processing Speed per Router

Figure 5 reports packet processing time across different
routers. Again, the statistics are collected over 100,000 packets
each with 1,000-byte payload.
Source router. The packet processing time of Hummingbird
on the source can be estimated as:

Tsrc = Tinit + Tconstr.
Tinit and Tconstr denote the time of SrcInitialization
and Construction, respectively. Under a 128-bit security
level, Hummingbird needs 1.44 µs to construct proofs. In
comparison, Baseline takes 1.15 µs. The slightly extra time
Hummingbird takes is to compute HiddenSample.
Intermediate router. Let Pn denote the probability of a
packet being sampled on the nth router. Let Ts, Tc, Tvh, Tvv ,

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 10

TABLE IV: Packet processing speed (10−7 second) per function using 100,000 test packets each with 1,000-byte payload.

Solution
Packet Processing Function

SrcInitialization EpSampling Construction Verification Update DstVerification
HiddenSample ValidationProof

Baseline 11.48 / / / 8.84 2.86 2.67
Hummingbird 8.74 0.26 5.61 1.68 8.70 1.68 2.74

��� ��� ���
�� ���� ���
�

�

��

��
��
��
���

��
��
�
��
��
��
�	
���

 ��������� ��������

Fig. 5: Packet processing speed (10−7 second) per router using
100,000 test packets each with 1,000-byte payload.

and Tu denote the time of EpSampling, Construction,
Verification of HiddenSample, Verification of Val-
idationProof, and Update, respectively. The overall packet
process time of Hummingbird on an intermediate router can
be defined as:

Tir = Ts + PnTc + (1− Pn)(Tvh + Pn−1Tvv + Tu)

= Ts +
1

n
(Tc + Tvv) +

n− 1

n
(Tvh + Tu).

Different from the packet processing time on the source, the
packet processing time on an intermediate router is no longer
a constant. It depends on the sampling probability, which
decreases with HopCount (Algorithm 1). The more routers that
the packet has traversed, the less likely it is sampled on the
current router. The less process time it thus may experience as
well. Furthermore, this also indicates a shorter process time
on the next hop where ValidationProof is less likely to be
necessary for Verification. As shown in Figure 5, the
average packet processing time of Hummingbird on the second
hop is 0.91 µs, while it decreases to 0.50 µs on the eighth
hop. In contrast, Baseline imposes a constant processing time
about 0.88 + 0.29 = 1.17 µs on intermediate routers, where
verifying and updating proofs contribute 0.88 µs and 0.29 µs,
respectively. The efficiency gap between Hummingbird and
Baseline thus increases with path length. Note that the pro-
cessing time of Hummingbird on the source and a specific
intermediate router is insensitive to path length. This further
demonstrates that Hummingbird supports fully dynamic paths
with unknown path length.
Destination router. The packet processing time of Humming-
bird on the destination can be estimated as:

Tdst = Tvh + Pn−1Tvv + Tdv

= Tvh +
1

n− 1
Tvv + Tdv,

where Pn−1 is the probability that the packet is sampled
by the previous router; Tvh, Tvv , and Tdv denote the time
of Verification of HiddenSample, Verification of

2 4 6 8 10 12
Path Length

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Payload = 500

Hummingbird Baseline

2 4 6 8 10 12
Path Length

0.5

1.0

1.5

(b) Payload = 1000

Fig. 6: Comparison of throughput with varying payload size
and path length.

ValidationProof, and DstVerification, respectively. As
path length increases, the probability of the second-last hop
sampling a packet decreases. Therefore, the destination is
more likely to take less time for DstVerification. For
example, when the path length is 8, the destination takes
0.57 µs to process the packet. When the path length scales
to 12, the destination only takes 0.52 µs. In contrast, Baseline
imposes a slower processing on the destination, being about
1.15 µs irrespective with path length.

F. Throughput

We now measure the throughput of Hummingbird in com-
parison with that of Baseline. As shown in Figure 6, through-
put of both Hummingbird and Baseline increases with payload
and decreases with path length. First, the payload size does
not affect the processing time (Section VI-D). A larger payload
size yields more data being processed and transmitted per unit
of time. Thus a higher throughput is achieved. For example,
when the payload size increases from 500 bytes to 1000 bytes,
the throughput of Hummingbird increases from 0.91 Gbps to
1.48 Gbps given a 2-hop path. Second, the total processing
time of a packet along an entire path increases as the path gets
longer. It thus takes more time to transmit a fixed-size packet
along a longer path; this decreases throughput. For example,
given a 1000-byte payload, the throughput of Hummingbird
decreases from 1.48 Gbps to 1.00 Gbps when path length
increases from 2 to 8.

Hummingbird outperforms Baseline in terms of a much
higher throughput as path length increases. Consider the 1000-
byte payload scenario for example. When path length is
8, Hummingbird’s throughput is 49.3% higher than that of
Baseline. The improvement increases to 64.2% when path
length reaches 12.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 11

2 4 6 8 10 12
Path Length

0.5

1.0

1.5

G
oo

dp
ut

 (G
bp

s)

(a) Payload = 500

Hummingbird Baseline

2 4 6 8 10 12
Path Length

0.5

1.0

1.5

(b) Payload = 1000

Fig. 7: Comparison of goodput with varying payload size and
path length.

2 4 6 8 10 12
Path Length

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (G

bp
s)

(a) Payload = 500

Hummingbird EPIC PPV

2 4 6 8 10 12
Path Length

0.5

1.0

1.5

2.0

(b) Payload = 1000

Fig. 8: Comparison of throughput with varying payload size
and path length.

G. Goodput

We report the measurements of goodput that reflects the
amount of effective data (i.e., payload) transmitted per unit
time. Let the goodput ratio define the ratio of payload size
and packet size. Then the goodput can be quantified as [12],
[14]:

goodput = throughput× goodput ratio.

As reported in Table III, the proof size of Hummingbird and
Baseline is 101 bytes and 69 bytes, respectively. Given a fixed
proof size, the goodput ratio increases with packet size. For
example, when the payload size is 500 bytes, the goodput
ratio of Hummingbird and Baseline is 76.57% and 80.52%,
respectively. When the payload size increases to 1000 bytes,
the goodput ratio of Hummingbird and Baseline increases
to 86.73% and 89.21%, respectively. We then measure the
goodput using the goodput ratio and the throughput reported
in Figure 6. As shown in Figure 7, Hummingbird yields a
higher goodput than Baseline does. The benefit increases with
path length.

H. Comparison with Static Path Validation

To justify the scale of throughput and goodput reported
in Figure 6 and Figure 7, we implement the state-of-the-art
static path validation solutions—EPIC [14] and PPV [13]—
as a reference. Both of them require the entire forward-
ing path to be known as a priori. EPIC enforces per-hop
validation while PPV, like Hummingbird, samples packets
to validate for boosting efficiency. As shown in Figure 8,

2 4 6 8 10 12
Path Length

0.5

1.0

1.5

2.0

G
oo

dp
ut

 (G
bp

s)

(a) Payload = 500

Hummingbird EPIC PPV

2 4 6 8 10 12
Path Length

0.5

1.0

1.5

2.0

(b) Payload = 1000

Fig. 9: Comparison of goodput with varying payload size and
path length.

EPIC outperforms PPV and Hummingbird given relatively
short forwarding paths. For example, given 1,000-byte packets
along a 2-hop path, EPIC yields a 1.71 Gbps1 throughput
while Hummingbird throughput amounts to 1.48 Gbps. This
is because Hummingbird performs more complex calculation
to deal with dynamic paths. However, as paths become longer,
Hummingbird starts outperforming EPIC. Consider still 1,000-
byte packets in use for example. When path length increases
to 12, EPIC throughput is 0.59 Gbps while Hummingbird
yields a 42.37% higher throughput of 0.84 Gbps. This is
because that the longer the forwarding path is, the more
chances for Hummingbird to reduce the number of validations
by equal-probability sampling. With less validation overhead
comes a higher throughput than that of EPIC. The preceding
observations apply also to the goodput comparison reported
in Figure 9. Different from the comparison between EPIC and
Hummingbird, PPV constantly yields a higher throughput and
goodput than Hummingbird does. This is because PPV does
not enforce some of Hummingbird’s computations to support
dynamic path validation as well hidden sampling status.

I. Tradeoff between Security and Efficiency

As Hummingbird adopts probabilistic validation toward
tradeoff between security and efficiency, we investigate how
sampling impacts security and efficiency. The evaluation is
still compared against PPV [13] and EPIC [14].
Security. Hummingbird as well as PPV do not enforce hop-
wise validation as EPIC does. The forwarding misbehavior of
a certain path segment may be left undetected if they sample
no packets right when packets traverse the segment. However,
a flow usually consists of a large number of packets. Jointly
using validation results of co-flow packets, we can still detect
forwarding misbehaviors [13].

The key interest of security evaluation is how many packets
needed to cover the entire path [13]. EPIC performs hop-wise
validation so that one packet is sufficient, regardless of the path
length. Given an N -hop path, PPV needs N packets to achieve
the same effect [13]. This is because PPV samples each packet
only once and after being sampled, a packet carries only one

1Note that the 1.71 Gbps throughput of EPIC is relatively lower than the
original result in [14]. We suspect that this is because the test server used
in [14] can support up to 40 Gbps bandwidth while our server support up to
10 Gbps.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 12

2 4 6 8 10 12
Path Length

1

2

3

A
ve

ra
ge

 S
am

pl
in

g
C

ou
nt

Fig. 10: Average sampling count by Hummingbird throughput
packet forwarding with varying path length.

TABLE V: Comparison of packet count needed to detect
forwarding misbehaviors across the entire path.

Solution Path Length

n = 2 n = 4 n = 8 n = 12

EPIC 1 1 1 1
Hummingbird 1 2 3 4

PPV 1 4 8 12

segment’s proof. The re-sampling technique enables Hum-
mingbird to likely sample a packet more than once. Security
of Hummingbird is thus between that of PPV and EPIC. Since
the sampling rate of a packet is 1/k in Hummingbird, where
k is the hop-index of routers (Section IV-C), the expectation
of a packet being sampled x times per transmission is equal to
E(x) = 1+ 1

2 + ...+
1
k + ...+

1
N ≈ ln(N)+0.5772. Figure 10

shows the average sampling count of a packet out of 10,000
test packets with varying path length. Consider an 8-hop path
for example. The expected sampling count is ln(8)+0.5772 =
2.66. The measurement result is 25856/10000 = 2.59, well
conforming to the theoretical distribution. Considering that one
sampling corresponds to the distance of one hop, the average
distance a packet can cover is also ln(N)+ 0.5772. Thus, the
number of packets that Hummingbird needs to cover the entire
path is N/(ln(N)+0.5772). Table V summarizes the number
of packets that different solutions needed to cover the entire
path. Hummingbird stays in between PPV and EPIC in terms
of security.
Efficiency We further evaluate how the tradeoff of security
by Hummingbird and PPV helps them improve efficiency.
Performance metrics of interest are the total end-to-end pro-
cessing time across the entire forwarding path and the average
processing time on every enroute node. As shown in Figure 11
and Figure 12, as path length scales, Hummingbird is faster
than EPIC and slower than PPV. When path length is 12,
the average processing time on each router is 0.86 µs for
Hummingbird and 1.14 µs for EPIC.

J. Multi-core Acceleration

Finally, we investigate the effect of multi-core acceleration
for Hummingbird. We implement a multi-core version of
Hummingbird using DPDK [27] on an Intel Xeon E5-2630
v3 server [48]. The server features with 8 cores, 16 GB
memory, and two hardware network-interface cards (NICs).
Such NICs associate with Intel Corporation I350 Gigabit
Network Connection and Intel Corporation Ethernet Controller

2 4 6 8 10 12
Path Length

5

10

15

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(

s)

Hummingbird EPIC PPV

Fig. 11: Comparison of total end-to-end processing time with
varying path length.

2 4 6 8 10 12
Path Length

1

2

3

A
ve

ra
ge

 P
ro

ce
ss

in
g

Ti
m

e
(

s) Hummingbird EPIC PPV

Fig. 12: Comparison of average processing time on each node
with varying path length.

X710, offering a 10 Gbps link. We expect throughput to
increase with core count available for packet processing.
Memory size for temporary packet storage, however, imposes
a practical restriction. Even though the router has sufficient
on-core computation resources to process more packets, it
can hardly do so with little remaining memory space for
storing those packets. Due to the relatively limited 16 GB
memory, the server we use reaches such peak usage when
4 cores are allocated for packet processing. Figure 13 reports
Hummingbird throughput with varying core count and payload
size on a 4-hop path. First, it echoes with preceding results
that given a fixed number of cores, throughput increases with
payload size. Second, of more focus of multi-core evaluation
is that given fixed payload size, throughput increases with
the number of allocated cores. Validating 1,000-byte packets,
Hummingbird achieves a 2.08 Gbps throughput using only one
core. It can be accelerated to 4.27 Gbps and 8.24 Gbps given
up to 2 cores and 4 cores, respectively.

VII. CONCLUSION

We have proposed Hummingbird as the first path validation
solution that supports fully dynamic paths. In contrast with
existing path validation solutions, Hummingbird can better suit
for networks with flexible routing policies. It features an equal-
probability sampling technique to enforce efficient validation
of packets albeit with unknown path length. The sample state
is also hidden via a lightweight, non-cryptographic scheme.
Both strategies prevent attackers from distinguishing sampled
and unsampled packets and thus prevent them from selectively
attacking packet forwarding. We validate security and effi-
ciency of Hummingbird through both theoretical proof and

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 13

100 200 300 400 500 600 700 800 900 1000
Payload Size (Bytes)

2

4

6

8

10
Th

ro
ug

hp
ut

 (G
bp

s)
1 core 2 cores 4 cores

Fig. 13: Hummingbird throughput with varying core count and
payload size on a 4-hop path.

experimental evaluation. The results demonstrate that Hum-
mingbird can guarantee an equal-probability sampling over
dynamic paths with unknown length. It can process packets
fairly fast and achieve a comparative throughput to the state-
of-the-art static path validation solution.

We suggest a lightweight enhancement for Hummingbird to
support path re-construction on the destination. Since Hum-
mingbird aims to validate dynamic paths, it is infeasible to
use a constant packet field to record forwarding paths as in
static path validation [12], [14], [15]. It is also prohibitively
inefficient to simply record all the possible dynamic paths
in the packet header [19]. Inspired by the hierarchy division
technique from Atlas [19], we introduce a dynamically updated
field, RTag, to record a divergence node (i.e., a router that
has multiple successors) that a packet traverses. RTag can be
appended to the Concealment field shown in Figure 3 so that
routers can process it without intervening the path validation
procedure as described in Section IV. The destination lever-
ages RTags in received packets for path re-construction as
follows.
• While the source and destination are designated with a

set of dynamic paths within a session, we first randomly
bound SessionID to a fixed static path in the set. The
bounding choice should be known to both the source and
destination as well as the enroute trusted routers.

• Once a trusted router receives a packet, it needs to add
no RTag if it is on the path bounded with SessionID.
Otherwise, the router adds an RTag into the header
to record its identifier. The first RTag indicates that
the packet has already deviated from the original path
bounded with SessionID. All subsequent trusted routers
need to append their RTags afterwards.

• When the destination receives the packet, it can re-
construct the path of trusted routers by splicing 1) trusted
routers on the SessionID bounded path prior to the first
RTag’s indicated router and 2) trusted routers correspond-
ing to all the RTags.

For future work, we plan to unleash Hummingbird speed
through hardware acceleration. The reported results in Sec-
tion VI are measured over software routers. Albeit software
routers tend to be more and more prevalent in large-scale data
centers, hardware routers are still critical for building a high-
speed infrastructure. We plan to offload as many Hummingbird
functionalities to FPGA boards [5] or Smart NICs [49]–[53]
as possible.

ACKNOWLEDGMENT

We would like to sincerely thank the Editors and Review-
ers of IEEE TRANSACTIONS ON INFORMATION FORENSICS
AND SECURITY for your review efforts and helpful feedback.
We also wish you health and safety during the pandemic.

The work is supported in part by National Natural Sci-
ence Foundation of China under Grant No. 62172358,
National Key R&D Program of China under Grant No.
2020AAA0107705, National Natural Science Foundation of
under Grant No. 62032021, Zhejiang Key R&D Plan under
Grant No. 2019C03133, Leading Innovative and Entrepreneur
Team Introduction Program of Zhejiang under Grant No.
2018R01005, Alibaba-Zhejiang University Joint Institute of
Frontier Technologies, and Research Institute of Cyberspace
Governance in Zhejiang University.

REFERENCES

[1] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G.
Andersen, “Scion: Scalability, control, and isolation on next-generation
networks,” in S&P. IEEE, 2011, pp. 212–227.

[2] D. Barrera, L. Chuat, A. Perrig, R. M. Reischuk, and P. Szalachowski,
“The scion internet architecture,” Communications of the ACM, 2017.

[3] K. Bu, A. Laird, Y. Yang, L. Cheng, J. Luo, Y. Li, and K. Ren,
“Unveiling the mystery of internet packet forwarding: A survey of
network path validation,” ACM Computing Surveys, vol. 53, no. 5, pp.
1–34, 2020.

[4] SCIONLab. [Online]. Available: https://www.scionlab.org/
[5] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and

A. Seehra, “Verifying and enforcing network paths with icing,” in
CoNEXT, 2011.

[6] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mittal,
“Bamboozling certificate authorities with {BGP},” in USENIX Security,
2018, pp. 833–849.

[7] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang,
and P. Mittal, “Raptor: Routing attacks on privacy in tor,” in USENIX
Security, 2015, pp. 271–286.

[8] L. D. Amini, A. Shaikh, and H. G. Schulzrinne, “Issues with inferring
internet topological attributes,” in Internet Performance and Control of
Network Systems III, vol. 4865. International Society for Optics and
Photonics, 2002, pp. 80–90.

[9] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, “Avoiding traceroute anomalies with
paris traceroute,” in SIGCOMM, 2006, pp. 153–158.

[10] X. Yang, D. Clark, and A. W. Berger, “Nira: a new inter-domain routing
architecture,” IEEE/ACM transactions on networking, vol. 15, no. 4, pp.
775–788, 2007.

[11] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton,
M. J. Freedman, A. Haeberlen, Z. G. Ives, A. Krishnamurthy et al., “The
nebula future internet architecture,” in The Future Internet Assembly.
Springer, 2013, pp. 16–26.

[12] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig,
“Lightweight source authentication and path validation,” in SIGCOMM,
vol. 44, no. 4, 2014, pp. 271–282.

[13] B. Wu, K. Xu, Q. Li, Z. Liu, Y.-C. Hu, M. J. Reed, M. Shenk, and
F. Yang, “Enabling efficient source and path verification via probabilistic
packet marking,” in IWQoS, 2018.

[14] M. Legner, T. Klenze, M. Wyss, C. Sprenger, and A. Perrig, “Epic:
Every packet is checked in the data plane of a path-aware internet,” in
USENIX Security Symposium, 2020, pp. 541–558.

[15] A. He, K. Bu, Y. Li, E. Chida, Q. Gu, and K. Ren, “Atomos: Constant-
size path validation proof,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 3832–3847, 2020.

[16] F. Yang, K. Xu, Q. Li, R. Lu, B. Wu, T. Zhang, Y. Zhao, and M. Shen,
“I know if the journey changes: Flexible source and path validation,” in
IWQoS, 2020, pp. 1–6.

[17] H. Cai and T. Wolf, “Source authentication and path validation with
orthogonal network capabilities,” in INFOCOM WKSHPS, 2015.

[18] ——, “Source authentication and path validation in networks using
orthogonal sequences,” in IEEE ICCCN, 2016, pp. 1–10.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 14

[19] L. Ma, K. Bu, N. Wu, T. Luo, and K. Ren, “Atlas: A first step toward
multipath validation,” Computer Networks, vol. 173, p. 107224, 2020.

[20] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin, “The
impact of routing policy on internet paths,” in INFOCOM, vol. 2. IEEE,
2001, pp. 736–742.

[21] K. M. Carley, Dynamic network analysis. na, 2003.
[22] S. Gao and I. Chabini, “Optimal routing policy problems in stochastic

time-dependent networks,” Transportation Research Part B: Method-
ological, vol. 40, no. 2, pp. 93–122, 2006.

[23] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Contra: A
programmable system for performance-aware routing,” in NSDI, 2020,
pp. 701–721.

[24] A. Abhashkumar, K. Subramanian, A. Andreyev, H. Kim, N. K. Salem,
J. Yang, P. Lapukhov, A. Akella, and H. Zeng, “Running bgp in data
centers at scale.” in NSDI, 2021, pp. 65–81.

[25] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software, vol. 11, no. 1, pp. 37–57, 1985.

[26] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems, vol. 18,
no. 3, pp. 263–297, 2000.

[27] DPDK: Data Plane Development Kit,. [Online]. Available: http:
//dpdk.org/

[28] B. Sengupta, Y. Li, K. Bu, and R. H. Deng, “Privacy-preserving network
path validation,” ACM Transactions on Internet Technology, vol. 20,
no. 1, pp. 1–27, 2020.

[29] P. A. Porras, S. Cheung, M. W. Fong, K. Skinner, and V. Yegneswaran,
“Securing the software defined network control layer.” in NDSS, 2015.

[30] Q. Li, X. Zou, Q. Huang, J. Zheng, and P. P. Lee, “Dynamic packet
forwarding verification in sdn,” IEEE Transactions on Dependable and
Secure Computing, vol. 16, no. 6, pp. 915–929, 2018.

[31] Q. Li, Y. Chen, P. P. Lee, M. Xu, and K. Ren, “Security policy violations
in sdn data plane,” IEEE/ACM Transactions on Networking, vol. 26,
no. 4, pp. 1715–1727, 2018.

[32] P. Zhang, H. Wu, D. Zhang, and Q. Li, “Verifying rule enforcement
in software defined networks with rev,” IEEE/ACM Transactions on
Networking, vol. 28, no. 2, pp. 917–929, 2020.

[33] P. Zhang, F. Zhang, S. Xu, Z. Yang, H. Li, Q. Li, H. Wang, C. Shen, and
C. Hu, “Network-wide forwarding anomaly detection and localization
in software defined networks,” IEEE/ACM Transactions on Networking,
vol. 29, no. 1, pp. 332–345, 2020.

[34] Q. Li, Y. Liu, Z. Liu, P. Zhang, and C. Pang, “Efficient forwarding
anomaly detection in software-defined networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 11, pp. 2676–2690, 2021.

[35] S. Xi, K. Bu, W. Mao, X. Zhang, K. Ren, and X. Ren, “Ruleout
forwarding anomalies for sdn,” IEEE/ACM Transactions on Networking,
2022.

[36] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for
message authentication,” in CRYPTO. Springer, 1996, pp. 1–15.

[37] D. Gligoroski, “Length extension attack on narrow-pipe sha-3 candi-
dates,” in ICT Innovations. Springer, 2010, pp. 5–10.

[38] M. Bellare and T. Kohno, “Hash function balance and its impact
on birthday attacks,” in International conference on the theory and
applications of cryptographic techniques. Springer, 2004, pp. 401–
418.

[39] G. Liu, H. Sadok, A. Kohlbrenner, B. Parno, V. Sekar, and J. Sherry,
“Don’t yank my chain: Auditable nf service chaining,” in NSDI, 2021,
pp. 155–173.

[40] J. Song, R. Poovendran, J. Lee, and T. Iwata, “The aes-cmac algorithm,”
RFC 4493, June, Tech. Rep., 2006.

[41] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on information theory, vol. 29, no. 2, pp. 198–208, 1983.

[42] M. J. Dworkin, “Sha-3 standard: Permutation-based hash and
extendable-output functions,” 2015.

[43] I. 9797, “Data cryptographic techniques: Data integrity mechanism using
a cryptographic check function employing a block cipher algorithm,”
1989.

[44] M. Bellare, J. Kilian, and P. Rogaway, “The security of the cipher block
chaining message authentication code,” Journal of Computer and System
Sciences, vol. 61, no. 3, pp. 362–399, 2000.

[45] J. Dongarra, “Report on the fujitsu fugaku system,” University of
Tennessee-Knoxville Innovative Computing Laboratory, Technical Re-
port. ICLUT, 2020.

[46] T. Lee, C. Pappas, A. Perrig, V. Gligor, and Y.-C. Hu, “The case for
in-network replay suppression,” in AsiaCCS, 2017, pp. 862–873.

[47] J. Rott, “Intel advanced encryption standard instructions (aes-ni),” Tech-
nical Report, Intel, 2010.

[48] Intel Xeon Processor E5-2630 v3,. [Online]. Available:
https://www.intel.com/content/www/us/en/products/sku/83356/
intel-xeon-processor-e52630-v3-20m-cache-2-40-ghz/specifications.
html

[49] J. Min, M. Liu, T. Chugh, C. Zhao, A. Wei, I. H. Doh, and A. Kr-
ishnamurthy, “Gimbal: enabling multi-tenant storage disaggregation on
smartnic jbofs,” in SIGCOMM, 2021, pp. 106–122.

[50] S. Grant, A. Yelam, M. Bland, and A. C. Snoeren, “Smartnic perfor-
mance isolation with fairnic: Programmable networking for the cloud,”
in SIGCOMM, 2020, pp. 681–693.

[51] M. Tork, L. Maudlej, and M. Silberstein, “Lynx: A smartnic-driven
accelerator-centric architecture for network servers,” in ASPLOS, 2020,
pp. 117–131.

[52] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and A. Akella, “Panic:
A high-performance programmable nic for multi-tenant networks,” in
OSDI, 2020, pp. 243–259.

[53] S. Pirelli and G. Candea, “A simpler and faster nic driver model for
network functions,” in OSDI, 2020, pp. 225–241.

Anxiao He received the B.Sc. degree in computer
science from the College of Computer Science and
Technology, Zhejiang University, in 2020. He is
currently pursuing the Ph.D. degree with the Col-
lege of Computer Science and Technology, Zhejiang
University. His research interest includes network
security.

Xiang Li received the B.Sc. degree in computer
science from the College of Computer Science and
Technology, Zhejiang University, in 2021. She is
currently pursuing the Ph.D. degree with the College
of Cyberspace Science, Harbin Institute of Technol-
ogy. Her research interest includes privacy protection
and federated learning.

Jiandong Fu received the B.Sc. degree in computer
science from the College of Computer Science,
Hangzhou Dianzi University, in 2019. He is cur-
rently pursuing the master degree with the College of
Computer Science and Technology, Zhejiang Univer-
sity. His research interest includes network security.

Haoyu Hu received the B.Sc. degree in computer
science from the College of Computer Science and
Technology, Zhejiang University, in 2022. His re-
search interests include network security and com-
puter vision.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, 2022 15

Kai Bu received the B.Sc. and M.Sc. degrees in
computer science from the Nanjing University of
Posts and Telecommunications, Nanjing, China, in
2006 and 2009, respectively, and the Ph.D. degree in
computer science from The Hong Kong Polytechnic
University, Hong Kong, in 2013. He is currently
an Associate Professor with the College of Com-
puter Science and Technology, Zhejiang University,
Hangzhou, China. His research interests include
network security and computer architecture. He is
a member of the ACM, the IEEE, and the CCF. He

is a recipient of the Best Paper Award of IEEE/IFIP EUC 2011 and the Best
Paper Nominee of IEEE ICDCS 2016.

Chenlu Miao received the B.Sc. degree in computer
science and technology from Zhejiang University,
Hangzhou, China, in 2021. She is currently pursuing
the master degree in computer science and technol-
ogy with Zhejiang University, Hangzhou, China. Her
current research interest is computer architecture.

Kui Ren is Professor and Associate Dean of College
of Computer Science and Technology at Zhejiang
University, where he also directs the Institute of
Cyber Science and Technology. Before that, he was
SUNY Empire Innovation Professor at State Univer-
sity of New York at Buffalo. Kui’s research interests
include Data Security, IoT Security, AI Security,
and Privacy. He received many recognitions includ-
ing Guohua Distinguished Scholar Award of ZJU,
IEEE CISTC Technical Recognition Award, SUNY
Chancellor’s Research Excellence Award, Sigma Xi

Research Excellence Award, NSF CAREER Award, etc. Kui has published
extensively in peer-reviewed journals and conferences and received the Test-
of-time Paper Award from IEEE INFOCOM and many Best Paper Awards
from IEEE and ACM, including ACM MobiSys, IEEE ICDCS, IEEE ICNP,
IEEE Globecom, ACM/IEEE IWQoS, etc. Kui is a Fellow of ACM and IEEE.
And he serves on the editorial boards of many IEEE and ACM journals. He
also serves as Chair of SIGSAC of ACM China Council, a member of ACM
ASIACCS steering committee, and a member of ST Committee of Ministry
of Education of China.

