
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 1

Atomos: Constant-Size Path Validation Proof
Anxiao He, Kai Bu* Member, IEEE, Yucong Li, Eikoh Chida, Qianping Gu, and Kui Ren Fellow, IEEE

Abstract—Path validation has been explored as an indispens-
able security feature for the future Internet. Motivated by the
Path-Aware Networking Research Group (PANRG) under the
Internet Engineering Task Force (IETF) and Internet Research
Task Force (IRTF), it gives end-hosts more control over packet
forwarding and ensures that the forwarding history is veri-
fiable. The main idea is to require that routers add proofs
in packet headers for other routers to verify. We identify
linear-scale proofs as the essential efficiency barrier of existing
path validation solutions. In this paper, we propose Atomos
to validate network paths with constant-size proofs. To this
end, we construct a noncommutative homomorphic asymmetric-
key encryption scheme. Asymmetric cryptography minimizes the
number of proofs needed and saves time in processing proofs.
The homomorphism we design yields constant-size proofs. It
limits the header-space overhead and outperforms existing linear-
scale counterparts when the path length exceeds a value that is
usually small. Furthermore, the proposed encryption scheme is
noncommutative so that any deviation from the forwarding path
can be detected. We explore a series of design strategies for
security and efficiency. The evaluation results show that Atomos
yields not only shorter proofs but also faster validation than
existing solutions.

Index Terms—Path validation, constant-size proof, homomor-
phic encryption.

I. INTRODUCTION

Motivated by the Path-Aware Networking Research Group
(PANRG) [1], [2] under the Internet Engineering Task Force
(IETF) and Internet Research Task Force (IRTF), path vali-
dation has been explored as an indispensable security feature
for the future Internet [3]–[7]. Path validation makes the for-
warding history of packets verifiably visible to both end-hosts
and routers. In the current Internet, end-hosts have no control
over packet forwarding. Once a packet enters the Internet, its
forwarding process is agnostic to end-hosts. A router may
not know any other routers that have processed the packet
besides the one from its previous hop. Such invisibility in
packet forwarding can be exploited to degrade service quality
and security. For example, some Internet service providers
(ISPs) collaborate on traffic forwarding [8]. Consider, for
example, a case in which a customer signs up with ISP1 with
a higher service fee and a higher expected service quality
than ISP2. If ISP1 transmits the customer’s traffic via the
slower ISP2, the customer may experience worse performance

A. He, K. Bu*, Y. Li, and K. Ren are with the College of Computer
Science and Technology, School of Cyber Science and Technology, Zhejiang
University, Hangzhou 310027, China. E-mail: {zjuhax, kaibu, yucongli,
kuiren}@zju.edu.cn

E. Chida is with the Department of Engineering for Future Innovation,
National Institute of Technology, Ichinoseki College, Ichinoseki 021–8511,
Japan. E-mail: chida@ichinoseki.ac.jp

Q. Gu is with the School of Computer Science, Simon Fraser University,
Burnaby, British Columbia V5A 1S6, Canada. E-mail: qgu@sfu.ca

*Corresponding Author: Kai Bu.
EDICS: NET-SPRO Security protocols.

than he agreed to. This performance degradation is, however,
unknown to the customer because of the invisibility of traffic
forwarding. Furthermore, such forwarding invisibility may
make a security breach unnoticeable. For example, service
requests made to the provider usually go through a series of
security checks [9], [10]. Only traffic verified as genuine is
expected to reach the provider. However, if attacking traffic
deviates from the expected forwarding path and circumvents
security checks, it may create various security issues for
the provider (e.g., DDoS attacks [10]). With path validation,
end-hosts are empowered to enforce forwarding preferences
along specific paths. Network entities, including end-hosts and
routers, can also verify whether packets have followed the
specified forwarding path. In this way, path validation offers
a verifiable method of protecting service quality and security.

Path validation introduces both enforcement and verification
for packet forwarding [3], [11]. Unlike the current Internet, the
path-validation-augmented Internet allows end-hosts to select
specific forwarding paths for specific traffic for quality or
security purposes. For example, end-hosts can select paths
with less frequent traffic congestion and packet loss in order
to achieve high quality and reliability. They can also select
paths without censorship or filtering to protect communication
security and privacy [12]. Enforcing forwarding preferences
follows a similar strategy as source routing. The source either
includes the specified path in packet headers [3] or passes
it to en-route routers at the time of session creation [4]. To
verify whether a packet has followed the specified path, each
router should add its proof to the packet header. The proof is
generated using cryptography to prevent forging. Each router
should prove itself to all its downstream routers. Since existing
path validation solutions use symmetric-key encryption for
speed, a straightforward design of such pairwise proof methods
introduces O(n2) proof fields in the packet header for an n-
hop forwarding path [11].

Along with security, efficiency in terms of proof length and
processing speed remains a major design goal. These two
performance metrics are proportional. That is, given a path
validation protocol, the fewer proof fields it introduces into a
packet header, the faster a router can process the packet. For
example, ICING [3] uses the aggregate message authentication
code (MAC) technique [13] to condense all proofs to the same
router as a single proof field. This decreases the number of
proof fields from O(n2) [11] to O(n). A root cause of the high
overhead of ICING is its strong robustness against malicious
nodes. Specifically, ICING assumes no trust between any pair
of nodes [3]. When a stronger security assumption is used,
less computation is necessary. For example, origin and path
trace (OPT) [4] uses a dynamically recreatable key (DRKey)
technique and lets a trusted source precompute critical infor-
mation that each en-route router needs for path validation.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 2

OPT not only shortens each of the O(n) proof fields but
also speeds up the verification process to only O(1) com-
putations. Following the same security assumptions as OPT,
orthogonal sequence verification (OSV) also assumes a trusted
source and uses orthogonal matrices as cryptographic keys
to promote higher efficiency [14], [15]. To further accelerate
path validation, probabilistic packet validation (PPV) [16]
enables routers to probabilistically tag packets with proofs.
Each packet is tagged by at most two routers. PPV, however,
cannot guarantee forwarding enforcement at the granularity
of packets. It requires that coflow packets jointly demonstrate
the forwarding behavior of en-router routers. In this paper,
we focus on a generic framework for path validation methods
requiring pairwise trust and packet granularity, such as ICING.

We observe several limitations that prevent an increase
in path validation efficiency. The common reason for all of
them lies in the use of verification proofs that are of linear
size in terms of path length. First, as the path lengthens,
its proof takes up more header space as well as network
bandwidth. Including more proofs in the traffic means having
less payload to transmit, given the fixed link capacity. It may
therefore decrease network throughput. Second, since a longer
proof takes more time to generate and verify, more packets
tend to be queued on routers or even dropped after queues
become full. Third, the symmetric-key encryption adopted by
path validation solutions requires each router to generate a
different proof for its downstream routers. This yields many
more proofs than are necessary. Essentially, a router requires
only one proof to prove itself to all other routers. Redundant
proofs cost more time to compute (because of, e.g., additional
generation, verification, and update steps) and lead to further
slowdown.

In this paper, we present Atomos to boost path-validation
efficiency using a constant-size validation proof. To this end,
we construct a noncommutative homomorphic asymmetric-
key encryption scheme. Using asymmetric cryptography, a
router requires only one proof to be generated using its secret
key. All other routers can verify the proof using the router’s
public key. This minimizes the number of proofs and saves
time in processing proofs. We design an additive magma
for aggregating proofs, a multiplicative magma for verifying
proofs, and a homomorphic mapping from the additive magma
to the multiplicative magma. All these yield a constant-size
proof. It limits the header-space overhead and outperforms
existing linear-scale counterparts when the path length exceeds
a value that is usually small, e.g., 4 or 5 hops. Finally,
the proposed encryption scheme is noncommutative so that
any deviation from the forwarding path can be detected. We
explore a series of design strategies for security and efficiency.
For example, we adopt a hash function with a certain property
that resists forging attacks.

Based on the observation that path validation uses cryptog-
raphy to avoid forgeability rather than to protect confidential-
ity, we propose a dynamic rekeying technique to shorten proofs
without sacrificing security. The evaluation results show that
Atomos yields not only shorter proofs but also faster validation
than existing solutions do.

In summary, we make the following major contributions:

• Identify linear-scale proofs as the essential barrier to
increasing the efficiency of path validation. Linear-scale
proofs based on symmetric cryptography increase both
header space and processing time as path length increases
(Section II).

• Propose a noncommutative homomorphic asymmetric-
key encryption scheme that offers a constant-size proof
(Section III).

• Design a path validation solution—Atomos—based on
the proposed encryption scheme. We explore a series
of design strategies (e.g., dynamic rekeying) to improve
efficiency without sacrificing security (Section IV).

• Prove the security properties (e.g., proof unforgeability)
of Atomos and discuss its nonsecurity goals compared
with those of existing solutions (Section V).

• Implement Atomos using the Click router (Section VI)
and validate its performance (Section VII). Compared
with existing solutions with linear-scale proofs, Atomos
yields not only shorter proofs but also faster validation.

II. PROBLEM

In this section, we review the evolution of path validation
solutions with the goal of promoting efficiency. Although the
symmetric-key cryptography they adopt supports fast valida-
tion, it enforces pairwise trust among routers through pairwise-
shared keys. A router needs a different key to prove itself
to each of the other routers. This also necessitates a linear-
scale validation proof in terms of path length. A long path
therefore induces a long validation proof that costs more
packet-processing time and network bandwidth. We propose
addressing all these limitations using the constant-size proof
in Section III.

A. Changes to Internet Architecture

Path validation necessitates a series of changes to the current
Internet architecture. The main entities of interest are the
source, destination, and routers. In the current Internet, the
source simply sends packets to the destination, and the routers
simply follow the longest-prefix match to forward the packets
to the destination. The current Internet simplifies the packet
forwarding process for, at best, the source, destination, and
routers. It ensures only that packets are forwarded to the
correct destination rather than via a certain forwarding path.
However, such simplicity prevents the end-hosts, such as the
source and destination, from seeing the packet forwarding
information. This leaves various forwarding misbehavior unde-
tected, which may affect service quality, security, and privacy
[3], [4], [12]. To empower end-hosts with forwarding visibility,
path validation needs to change the working logic of end-hosts,
routers, and the entire Internet architecture, as described below.
End-host change. Path validation requires the source and
destination to 1) specify a forwarding path, 2) share keys with
each other as well as with routers on the specified forwarding
path, and 3) encapsulate packets with path-related proofs and
verify such path proofs. Requirement 1 further requires a
change to the current Internet architecture. That is, the
Internet should be empowered to compute paths requested by
end-hosts and authorize these paths to end-hosts and routers
[3]. However, it is unlikely that there could be a centralized



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 3

authority with global knowledge of routing paths between any
two end-hosts. ISPs can collectively achieve the function of
such a centralized authority. Specifically, they can share their
internal topology with other ISPs to compute all interdomain
routing paths. Essentially, path validation should be provided
to end-hosts as a service. Since all Internet services should
be built upon the underlying Internet architecture, ISPs can
install corresponding routing policies as they authorize certain
forwarding paths to end-hosts. For requirement 2, end-hosts
need to share keys among themselves as well with routers. The
former ability can easily be supported in the current Internet
via, for example, session keys. The latter, however, requires
architectural updates, which may be performed in several
ways. First, the centralized authority can directly share per-
path shared keys for end-hosts and on-path routers. Second,
end-hosts can individually communicate with on-path routers
to exchange shared keys. Third, routers can derive keys shared
with the source from packets on the fly [4]. Requirement 3
simply requires service clients on end-hosts to perform certain
functions, and the computation capabilities needed, such as
cryptography, are readily available.
Router change. At the heart of path validation implementation
are routers’ packet processing logics. Conventionally, routers
simply match packet headers to forwarding entries in routing
tables and follow the longest-prefix-match protocol. To support
path validation, routers should perform more computation over
packet headers. They need to correlate a packet with the
specific forwarding path authorized to the packet. They should
first verify the packet-carried proof generated by upstream on-
path routers and then, if the verification passes, update the
proof by incorporating their own proof. Proof verification and
update require shared keys among routers; this may induce
further changes to router communication. Routers would no
longer follow the longest-prefix match to forward packets.
Instead, the forwarding decision would already be dictated
by the authorized forwarding path. All the previous packet
processing logics should be updated in router software [4].
Deployment. It may be challenging to upgrade routers all at
once to support path validation. We suggest a feasible method
for incremental deployment. Given that path validation is
considered a service, ISPs that opt for providing such a service
can modify their routers accordingly. The modified routers
would act as waypoints. However, conventional routers would
still follow traditional longest-prefix matching for packet for-
warding. Therefore, a necessary change is that the source
should replace the destination with the first waypoint router
in its packets. Similarly, the first waypoint router would set
the destination of these packets to the second router. This is
essentially a coarse-grained version of path validation, because
only some routers along the forwarding path would enforce
path validation. We consider the deployment of path validation
to be beyond the scope of this paper and focus mainly on the
design of path validation principles.

B. The Road to Efficient Path Validation

Path validation enables routers to verify whether a packet
has transited the specified path in the correct order. This goal is
achieved through two subgoals: enforcement and verification.

Enforcement is similar to the idea of source routing [17],
[18]. It allows the source to select forwarding paths for its
traffic. Path validation solutions have two options to enforce
a forwarding path between end-hosts. One is to embed the
path information in packet headers [3]; the other is to provide
the path information to en-route routers when a connection
is created [4]. To verify whether a packet has followed the
enforced path, each router should add its proof to the packet
header. These proofs are used by subsequent routers to verify
the packet’s forwarding history. If it conforms to the enforced
path, the packet is deemed valid. Otherwise, the packet may
have traversed an unspecified path via untrusted routers. It
should be dropped to protect service quality and security [3].

Given that any router may be compromised to circumvent
path validation, initial solutions require pairwise trust among
routers [3], [11]. They enforce per-hop verification in that
every en-route router verifies whether a packet has visited all
its upstream routers in the correct order. To enable verification
at each hop, each en-route router should embed proofs in
the packet header, each of which proves the router to a
downstream router. Symmetric-key cryptography is adopted
because of its speed. Every pair of routers exchanges a shared
secret key, which is used to compute and verify proofs. A
straightforward solution would yield O(n2) proofs in the
header of a packet along an n-hop path. A representative
solution, ICING [3], leverages the aggregate MAC technique
[13] to shorten proofs. It condenses all O(n2) pairwise proofs
into O(n) fields. Each field is dedicated to a router. When a
packet reaches a router, the router’s corresponding field should
have been computed by all proofs from the router’s upstream
routers. If the field passes verification, the router then embeds
proofs for all its downstream routers in the respective fields
and sends the updated packet to the next hop.

Assuming a trusted source, a router can verify and update
only O(1) fields for path validation [4], [14], [15]. A typical
solution of this type is OPT [4]. It introduces a PVF field
and a series of OPV fields in a packet header. The PVF field
is initialized by the source. It is then used for verification
by en-route routers and is updated if verification succeeds.
The source also initializes one OPV field per en-route router,
such that OPVi = f(PVFi−1), where f(·) is a verification
function shared among all routers. Since the source is trusted
by the other routers, it can precompute all the expected OPV
fields. Each router does not need to compute a different
proof for each downstream router because they share no
keys. For services where the destination is skeptical of the
trustworthiness of the source, en-route routers should share
keys with the destination and compute proofs for it [4]. More
generally, if all routers, including the source and destination,
can be compromised or misbehave, pairwise key sharing and
proof computation become necessary [7]. This increases the
computational complexity back to O(n2).

Weakening the security of path validation can further im-
prove efficiency. For example, PPV [16] does not require
a packet to be validated by all routers it visits. Instead,
each router probabilistically embeds its proof in the packet
header. A packet is marked by only two adjacent routers. The
destination will verify the marked packet. With each packet



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 4

verifying the forwarding behavior of two adjacent routers, all
coflow packets may jointly verify the forwarding behavior of
all links and thus the entire path. Since a packet is not verified
by all the routers, it is possible that some attacking packets
will evade security checks. PPV is suitable for services where
one or a few attacking packets can have little impact [3].

C. Barriers to an Increase in Efficiency

In this paper, we focus on the generic form of path val-
idation that enforces pairwise trust proofs among all routers
on every packet. Notwithstanding progressive efficiency gains,
existing path validation solutions face several barriers to
making another leap of efficiency. A linear-size verification
proof in terms of path length imposes a high overhead on
the source for construction, the routers for verification and
update, and the destination for verification. Packets with longer
proofs cost more network bandwidth. This will likely lead
to an additional end-to-end delay, which may outweigh the
computation speedup on routers. Furthermore, with pairwise-
shared keys, each node may need to prove itself to every
other node using an individual provenance assurance. One such
assurance, however, should be sufficient for a node to prove
it had processed a packet.
Expansive verification proof. Existing path validation solu-
tions enforce an O(n)-size verification proof for an n-hop
path. The proof size is linear in the path length. For example,
ICING includes a verification proof with one 336-bit verifier
field per router to guarantee an 80-bit security level [3].
Similarly, OPT requires an individual 128-bit OPV field for
each router [4], while OSV requires a much shorter 16-bit
OV field per router [14], [15], satisfying a 128-bit security
level. Previous measurements show that it is common for a
path to span more than 15 hops; some may reach 30 or 40
hops [19], [20]. A longer path leads to a longer verification
proof. The more bandwidth such proofs cost, the less is left
for payload transmission. This will likely increase the end-
to-end delay. Furthermore, a packet with a longer verification
proof requires more processing time. A router may thus have
more queued packets than it would have had if the packets had
shorter verification proofs. Both slower processing and longer
queuing further inflate the end-to-end delay.
Expensive proof construction. Given an O(n)-size verifica-
tion proof, the source needs to precompute all O(n) of its
fields. ICING requires that the source share a different key
with each en-route router. Then, the source uses each key
to compute a different verifier to prove itself to the corre-
sponding router. Since ICING also requires pairwise shared
keys among other routers, the source need not precompute
verifiers for other routers. OPT and OSV, however, impose
more computation on the source because they only use shared
keys between the source and en-route routers. In other words,
when en-route routers share no keys and have no means to
verify each other, the source needs to precompute for each
node the aggregate assurance of all its upstream routers. An
untrusted source may also forge verification proofs [4]. From
both efficiency and security perspectives, the source should
be restricted to having only the secrets needed for generating
its own provenance assurance. The source requires only one

TABLE I
PER-SOURCE, PER-ROUTER, AND PER-DESTINATION COMPLEXITY

COMPARISON OF ATOMOS WITH EXISTING SYMMETRIC-KEY
ENCRYPTION-BASED SOLUTIONS [3], [4], [14], [15].

Source Complexity:
Solution Space Computation

key proof initialization verification update
ICING O(n) O(n) O(n) O(0) O(0)
OPT O(n) O(n) O(n) O(0) O(0)
OSV O(n) O(n) O(n) O(0) O(0)

Atomos O(n) O(1) O(1) O(0) O(0)
Router Complexity:
Solution Space Computation

key proof initialization verification update
ICING O(n) O(n) O(0) O(n) O(n)
OPT O(1)∗ O(n) O(0) O(1)∗ O(1)∗

OSV O(1)∗ O(n) O(0) O(1)∗ O(1)∗

Atomos O(n) O(1) O(0) O(1) O(1)
Destination Complexity:
Solution Space Computation

key proof initialization verification update
ICING O(n) O(n) O(0) O(n) O(0)
OPT O(1)∗ O(n) O(0) O(1)∗ O(0)
OSV O(1)∗ O(n) O(0) O(1)∗ O(0)

Atomos O(n) O(1) O(0) O(1) O(0)
∗Notes: For OPT [4] and OSV [14], [15], the marked complexities of
∗Notes: O(1) directly follow the conclusion of their designs as given.
∗Notes: However, as discussed in Section II-B, the O(1) complexity
∗Notes: increases to O(n) if pairwise trust is enforced as in ICING [3] and
∗Notes: Atomos (in this paper).

assurance at minimum to prove itself to all other nodes, so
proving itself to each node in a different way is unnecessary.
Redundant provenance assurance. To generalize the pre-
vious observation, we find that current solutions require in-
termediate routers to generate more provenance assurances
than necessary. Take ICING for example. As with the source,
each intermediate router generates a provenance assurance for
every downstream router. Each provenance assurance uses a
different pairwise-shared key. The complexity of updating a
verification proof on each node is thus O(n). Subsequent
solutions such as OPT and OSV further demonstrate the O(n)
update complexity. If a node does not trust the source, it
uses keys agnostic to the source for generating provenance
assurances for its downstream routers [4]. Using the same
shared key with two or more routers is vulnerable to assurance
forgery. A router thus requires O(n) keys, each shared with a
different downstream router. Then, a node needs to generate
O(n) different provenance assurances. Essentially, however,
one assurance is sufficient for a router to prove to all others.

III. MOTIVATION

In this section, we motivate our construction of a noncom-
mutative homomorphic asymmetric-key encryption scheme to
address the preceding limitations (Section II-C). It provides a
constant-size validation proof. Constant-size proofs not only
economize bandwidth usage and increase network throughput
but also enable validation of particularly long paths. Table I
demonstrates how constant-size proofs significantly increase
efficiency through our path validation solution Atomos.

To address the limitations of current path validation solu-
tions (Section II-C), we advocate that path validation proofs be
constructed by a noncommutative homomorphic asymmetric-
key encryption scheme. Our scheme has the following proper-
ties: asymmetry, aggregation of proofs and noncommutativity.
First, asymmetry minimizes the number of proof keys per



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 5

router to one. This decreases the cost of exchanging and
maintaining keys and creating proofs at each router. Second,
our scheme aggregates multiple proofs into one, enabling a
constant-size proof throughout the whole validation process.
Third, noncommutativity enforces that different aggregation
sequences yield different proofs. This guarantees that packets
carrying valid proofs visit all the routers on the specified path
in the correct order. Together, these three properties promise
an efficient and fast path validation solution.
A. Asymmetry

We adopt asymmetric-key encryption to minimize the num-
ber of proofs each router needs in order to prove itself to
other routers. Existing solutions, however, use symmetric-
key encryption for the sake of speed. A router then proves
itself to another using their shared key. To prevent forging,
routers should share secret keys in a pairwise way, necessi-
tating O(n2) keys [3]. Otherwise, any other router holding a
router’s secret key can impersonate it and forge its proof [4].
Such a pairwise key-sharing requirement imposes much more
overhead than necessary. Using asymmetric-key encryption,
a router maintains only one pair of public and private keys,
requiring only O(n) keys. Its proof generated using the private
key can be verified by anyone holding the public key. A single
proof is thus sufficient for one router to prove itself to others.

A major design challenge raised by asymmetric-key en-
cryption is speed. The concern stems from the intrinsic speed
gap between asymmetric- and symmetric-key encryption. We
compensate for the otherwise slow speed of asymmetric-key
encryption in our scheme with three design strategies. The
first is directly inherited from the property of asymmetric-
key encryption. That is, a single proof computed using the
private key can prove a router to all other routers. A router
thus computes only one proof for all its downstream routers,
instead of one for each as in current solutions. The second
design strategy, to be detailed shortly, is to aggregate multiple
proofs into one constant-size proof. A router then needs to
verify only one proof instead of one for each upstream router.
Finally, we propose a dynamic rekeying technique to further
shorten proofs without sacrificing security.
B. Aggregation of Proofs

Our scheme creates a single constant-size proof. To achieve
this, we design a noncommutative additive magma for ag-
gregating proofs into one, a noncommutative multiplicative
magma for verifying an aggregated proof, and a homomorphic
mapping from the additive magma to the multiplicative magma
to apply a simple asymmetric-key encryption scheme for
creating and verifying proofs. Given a single proof, both verifi-
cation and update operations are computed over the only field.
This helps greatly accelerate the otherwise slow asymmetric-
key encryption. Furthermore, the constant-size proof is a
major contribution by Atomos. Constant-size proofs avoid the
explosion of packet sizes as path lengths increase. The median
length of network paths is approximately 16 hops, while long
paths can exceed 30 hops [21]. Consider, for example, ICING
with 42 bytes per proof field [3]. A 16-hop path requires a
proof of 42 × 16 = 672 bytes. Together with other header
fields, they take up to nearly half of the 1500-byte MTU

 Payload

TCP Header

Atomos Header

IP Header

Timestamp

SessionID

DataHash
Constant-Size Proof: 

 

AtomosProof

Fig. 1. Atomos header architecture. Among the four fields, DataHash,
SessionID, and Timestamp follow existing designs, while AtomosProof is
newly designed for a constant-size path validation proof. All header fields
need to be initialized by the source. The subsequent routers need only verify
and update AtomosProof, which consists of three fields.

limit. This indicates a bandwidth utilization of 50%, as only
half of the traffic comprises packet payloads. When the path
length exceeds 30 hops, header fields may take up the whole
packet space, possibly leaving no space for payloads. With
constant-size proofs, Atomos can address all the preceding
limitations. Consider, for example, using a 1,024-bit group
size for asymmetric-key encryption. The generated proof field
is 1,433 bits, that is, approximately 180 bytes (Section IV-F).
Under the same security level, an ICING proof becomes longer
than an Atomos proof when a path is longer than 5 hops.
Atomos economizes bandwidth usage and increases network
throughput. More importantly, Atomos enables path validation
to be applied in networks with particularly long paths.

C. Noncommutativity

Finally, the noncommutative operations in our scheme for
aggregating and verifying proofs enforce a forwarding order.
Path validation accepts forwarding only if a packet goes
through all en-route routers in the correct order. Our scheme
not only supports constant-size proofs but also enforces order
checking inside proofs.

IV. DESIGN

In this section, we present Atomos to validate network paths
in an extremely efficient way. It uses our newly constructed
noncommutative homomorphic public-key encryption scheme
to overcome the aforementioned efficiency barriers of path val-
idation. Atomos guarantees a constant-size verification proof.
We also explore various design choices to accelerate Atomos.

A. Header Architecture

As with existing path validation solutions [4], [14]–[16],
the Atomos header in a packet header is located between the
IP header and the TCP header (Figure 1). Given the fixed
length of the IP header, it is very convenient for routers to
extract the Atomos header while parsing packet headers. There
may be other options for the insertion of the path validation
header. For example, we may append the Atomos header to
the payload [10]. However, given various payload lengths,
routers may have to look up various lengths of payloads until
they find the appended Atomos header. This is less convenient
than when the Atomos header directly follows an IP header
with a fixed length. Furthermore, we consider a generalized
scenario in line with existing path validation solutions; that is,
all routers along the forwarding path support path validation.
Otherwise, if only selective routers along the forwarding path
support path validation, we need to prefix the IP header with
the IP Tunnel header [5]. Note that the IP Tunnel header helps
to direct packets to routers that are capable of validation. It



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 6

does not enforce validation itself. Instead, after it guides a
packet to the destined router indicated in its destination field,
the destined router still needs to use the Atomos header for
packet verification. Without loss of generality, we consider
the generalized scenario here—inserting the Atomos header
between the IP header and the TCP header without using the
IP Tunnel header [3], [4], [14]–[16].

As shown in Figure 1, the Atomos header consists of four
fields: DataHash, SessionID, Timestamp, and AtomosProof.
The first three follow the design of existing solutions, while
the fourth AtomosProof field differs from existing proof
designs. Specifically, we construct a constant-size Atomo-
sProof using our newly proposed noncommutative homomor-
phic asymmetric-key encryption scheme (Section III). All
four fields are initialized by the source router, while only
AtomosProof is verified and updated on subsequent routers.
DataHash. Given a packet with payload P , its DataHash field
is set as the payload’s hash value H(P ). We mainly use
DataHash to verify packet integrity. The hash function H is
shared on all routers. If an attacker cannot compromise H ,
it will not be able to forge a packet with a valid DataHash.
Simply including DataHash in the packet header is insufficient
to protect against packet forgery. Since H is shared among
routers, a compromised or misbehaving router may compute
a valid H(P ) for any P . Therefore, a path validation solution
should also include H(P ) in the computation of validation
proofs. As each router has unique credentials for computing
proofs, a router cannot forge valid proofs of packets forged
by other routers without knowing their credentials.

Following current Internet principles, packet integrity veri-
fication is usually performed at the end-host. For verification,
a host first computes the hash value of the packet payload
H(P ). Then, it compares H(P ) with the DataHash carried in
the packet. If they match, integrity verification succeeds. Oth-
erwise, the packet is deemed altered and should be dropped.
SessionID. For each session, the source and destination agree
on a SessionID to track subsequent traffic and may also
negotiate a session-specific configuration. Following OPT [4],
we let the source and destination negotiate the path that
traffic in a session will take at the creation of the session.
Each en-route router locally records pairs of SessionIDs and
corresponding paths. In this way, a packet carries only the
SessionID instead of the specific path. This not only saves
bandwidth but also protects path privacy [22].

The SessionID should also be included in AtomosProof
computation. Otherwise, a misbehaving or compromised router
can replace the SessionID and deviate the packet to the
corresponding path. Consider two session IDs with corre-
sponding paths having overlapping segments. For example,
SessionIDa corresponds to the path (r1, r2, r3) and SessionIDb
corresponds to the path (r1, r2, r4). Router r2 may replace
SessionIDa with SessionIDb. When router r4 receives the
redirected packet, since its SessionIDb leads it on a path to
r4, it is deemed valid. We can address such packet deviation
by including the SessionID in AtomosProof computation. If
router r1 computes its proof using SessionIDa, r4 will not
validate the proof if SessionIDa is replaced with SessionIDb.
Timestamp. This records the time when the source creates a

packet. It indicates packet freshness and helps avoid replay
attacks in a session [4]. If Timestamp verification is not
enforced, an attacker can replay a recorded valid packet with
the Timestamp updated to the latest value. Therefore, the
Timestamp should be included in AtomosProof computation
as well.
AtomosProof. As shown in Figure 1, AtomosProof consists of
three fields—r̃i, σ̃i, and ũi. We compute them following the
encryption scheme in Section IV-C for a constant-size proof.
Proof computation and verification require router identifiers
and keys as well as other information (i.e., the DataHash,
SessionID, and Timestamp) in the Atomos header. Algorithm 1
highlights the key functions for Atomos path validation. We
will shortly detail them alongside the Atomos principles in
Section IV-B, Section IV-C, and Section IV-D.

B. Validation Rationale
Noncommutative homomorphic asymmetric-key encryp-
tion. We now present the construction of our noncommutative
homomorphic asymmetric-key encryption scheme. It is the
key building block for Atomos to enable constant-size path
validation proofs.

We first construct an additive magma and a multiplicative
magma. Let p > 2 be a large prime number, Zp = {0, 1, ..., p−
1} and Z∗

p = {1, 2, ..., p − 1}. Let X × Y be the Cartesian
product of sets X and Y .

Definition 1. Additive Magma (Zp−1×Zp−1, ?): We define
a binary operation ? : Zp−1 × Zp−1 → Zp−1 × Zp−1 as:

(a1, b1) ? (a2, b2) = (a1 + a2, a1 + b1 + b2) mod (p− 1).

The operation ? is closed in Zp−1 × Zp−1, and we call
(Zp−1,Zp−1, ?) an additive magma.

Definition 2. Multiplicative Magma (Z∗
p×Z∗

p,�): We define
a binary operation � : Z∗

p × Z∗
p → Z∗

p × Z∗
p as:

(a1, b1)� (a2, b2) = (a1a2, a1b1b2) mod p.

The operation � is closed in Z∗
p×Z∗

p, and we call (Z∗
p×Z∗

p,�)
a multiplicative magma.

Next, we construct a homomorphic mapping F from the
additive magma to the multiplicative magma.

Definition 3. We define a function F : (Zp−1 × Zp−1, ?) →
(Z∗
p × Z∗

p,�) as follows:

F (a, b) = (f(a), f(b)) = (ga, gb),

where we have a function f : Zp−1 → Z∗
p defined as f(x) =

gx mod p and g is a generator of Z∗
p.

We prove that 1) both the additive magma and the multi-
plicative magma are noncommutative in Lemma 1 (Appendix
A) and 2) the function F is a noncommutative homomorphic
function in Lemma 2 (Appendix A). From Lemma 1 and
Lemma 2, we have the following result, the proof of which is
in Appendix A:

Theorem 1. A noncommutative homomorphic asymmetric-
key encryption scheme can be constructed from the addi-
tive magma (Zp−1 × Zp−1, ?), the multiplicative magma



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 7

(Z∗
p × Z∗

p,�), and the homomorphic function F : (Zp−1 ×
Zp−1, ?)→ (Z∗

p × Z∗
p,�).

Validation rationale. The validation rationale is based on
Theorem 1. Specifically, the noncommutative homomorphic
asymmetric-key encryption scheme constructs a constant-size
proof per packet. While the packet transits its specified path,
each en-route router integrates its own proof into the proof.
Furthermore, it validates the proof to check whether all its
upstream routers have done so in the correct order. Consider
an l-hop path (r1, r2, ..., ri, ..., rl), where ri, for 1 ≤ i ≤ l,
denotes the identifier of the ith en-route router. To construct
the proof of router ri, we introduce a two-tuple (ri, σi). The
first item uses the router identifier to specify the ownership
of proof. The second item, to be elaborated shortly in Sec-
tion IV-C, is computed using ri’s secret key and can be
verified using its public key. Building on the homomorphism
of function F in Equation 17, we construct (ri, σi) over the
magma (Zp−1 × Zp−1, ?). Then, the aggregate constant-size
proof for ri to verify is as follows:

(r̃i, σ̃i) = (r1, σ1) ? ... ? (ri, σi), (1)

where

r̃i =
∑

1≤j≤i

rj , and σ̃i =
∑

1≤j≤i

σj +
∑

1≤j≤i−1

∑
1≤k≤j

rk, (2)

according to Definition 1. Following Equation 17 in Lemma 2,
we can verify the proof of router ri if

F (r̃i, σ̃i) = F (r1, σ1)� F (r2, σ2)� ...� F (ri, σi). (3)

A notable aspect of this new design is that we do not
have to know all specific F (rj , σj)’s for 1 ≤ j ≤ i on the
right side of Equation 3 for validation. In current symmetric-
key encryption-based solutions, a router needs to hold other
routers’ proofs for validation. For example, ICING exchanges
pairwise keys among routers, and a router can recompute the
proof from another router using their shared key. Similarly,
OPT lets a trusted source precompute proofs of en-route
routers. Unlike existing solutions, Atomos adopts asymmetric-
key encryption. A router now computes its proof using its
secret key, which should be unknown to other routers. We also
cannot simply carry router proofs in the packet header, as this
violates the constant size requirement. Next, we detail how
we design the proof item σi such that it enables the constant-
size proof to be validated using only public keys and other
available information carried in packet headers.

C. Proof Construction

Initialization.
Key generation and exchange among routers are outlined in

lines 1-11 of Algorithm 1. Note that we follow the security
assumption of ICING [3] with pairwise shared keys required.
In this way, we do not need to assume that all the sources,
destinations, and routers trust each other. Since Atomos is
based on asymmetric-key encryption, each router ri should
first initialize a pair of secret keys ks

i and public keys kp
i =

f(ks
i) = gk

s
i mod p (lines 8-9), where function f is defined in

Definition 3 and g is a generator of Z∗
p (lines 4-6). To promote

Algorithm 1: Atomos Path Validation

1 Function Initialization:
2 //key generation and exchange among routers;
3 //step 1: generator generation
4 q ← random prime number such that 2q + 1 is

prime;
5 p← 2q + 1;
6 generator g ← random number such that generator

nerator g ← g2 6≡ 1 (mod p) and gq 6≡ 1
(mod p);

7 //step 2: secret and public key generation
8 ks

i ← random prime number;
9 kp

i = f(ks
i) = gk

s
i mod p;

10 //step 3: key exchange
11 Router ri sends (ri, k

p
i ) to other routers;

12 Function Construction:
13 if router ri is source r1 then
14 SessionID ← identifier of the current session;
15 Timestamp ← creation time of the packet with
16 Timestamp ← payload P ;
17 DataHash ← H(P );
18 //construction of AtomosProof
19 r̃1 ← r1;
20 h = DataHash||SessionID||Timestamp;
21 c1 ← random number;
22 σ̃1 ← ks

1 + c1H(h) mod (p− 1);
23 ũ1 ← u1 = f(c1) = gc1 mod p;
24 AtomosProof = Proof1 ← (r̃1, σ̃1)||ũ1;

25 else
26 //ri is intermediate and updates only

AtomosProof
27 h = DataHash||SessionID||Timestamp;
28 ci ← random number;
29 σi ← ks

i + ciH(h) mod (p− 1);
30 ui ← f(ci) = gci mod p;
31 (r̃i, σ̃i)← (r̃i−1, σ̃i−1) ? (ri, σi);
32 ũi ← ũi−1ui mod p;
33 AtomosProof = Proofi ← (r̃i, σ̃i)||ũi;

34 Function Verification:
35 //Proofi = (r̃i, σ̃i)||ũi is verified by router ri+1;
36 δ(ri)←

∑
1≤j≤i−1

∑
1≤k≤j rk;

37 left← gσ̃i mod p;
38 right← gδ(ri)(ũi)

H(h)
∏

1≤j≤i k
p
j mod p;

39 if left == right then
40 Accept the packet and update the proof;

41 else
42 Drop the packet;

speedup, we choose a prime p such that p − 1 has only two
prime factors, and the generator g can be precomputed by line
6 [23]. The identifier ri and corresponding public key kp

i are
public to other routers (line 11).
Proof construction at the source. With the DataHash, Ses-
sionID, and Timestamp generated following Section IV-A
(lines 14-18), the source continues by generating the Ato-



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 8

mosProof as follows (lines 19-24). As mentioned in Sec-
tion IV-B, router ri includes its proof of a two-tuple (ri, σi).
The item σi should be computed using ri’s secret key such
that it can be verified by other routers using ri’s public key.
Normally, asymmetric-key encryption enforces exponentiation
that is much slower than polynomial computation. To promote
speedup, we use ri’s secret key ks

i with an addition instead
of a slow exponentiation. Specifically, the source router r1

computes σ1 as:

σ1 = ks
1 + c1H(h) mod (p− 1),

where c1 is a random number to hide ks
1 and

h = DataHash||SessionID||Timestamp

to verify packet integrity. Note that c1 should be randomly
generated for each packet. If it were a constant, a series of
packets would lead to a system of equations that would render
both ks

1 and c1 solvable.
Solely using (r1, σ1) as the source router r1’s proof, how-

ever, cannot enable verification by subsequent routers. This is
because it uses a newly generated random number c1 to hide
ks

1. Without c1, computation using ks
1 can be verified by its

corresponding public key kp
1 . On the basis of this property of

asymmetric-key encryption, we regard the random number c1
as another one-time secret key of the source router r1. Then,
we compute its corresponding public key u1 as follows:

u1 = gc1 mod p. (4)

We send u1 together with the two-tuple (r1, σ1) to the next-
hop router r2. Using u1 and r1’s public key kp

1 , r2 can verify
the proof generated using their secret counterparts c1 and ks

1.

Definition 4. Proof at the Source Router r1: The proof
constructed by the source router r1 is defined as follows:

Proof1 = (r̃1, σ̃1)||ũ1,

where we have

(r̃1, σ̃1) = (r1, σ1), and ũ1 = u1.

To further accelerate the proof construction process, we
can precompute a set of (c1, u1) pairs and store it on router
r1. Then, we can save the time cost of the random number
generation for generating c1 and of the exponentiation for
generating u1 in Equation 4. We delete a pair after using it
to compute the proof of a packet. The set can be replenished
through precomputation while the router is less busy.
Proof construction on intermediate routers. One major
design choice in constructing the proof of an intermediate
router is how to integrate its proof into the upstream routers’
such that a constant proof size is maintained. An intermediate
router updates only AtomosProof (lines 27-33). The other three
fields—DataHash, SessionID, and Timestamp—are unmodi-
fied. As with the source router r1, router ri first generates its
pair (ri, σi) as follows (lines 27-29):

σi = ks
i + ciH(h) mod (p− 1). (5)

Following Equation 4, we compute the corresponding ui of
the random ci as (line 34):

ui = gci mod p. (6)

Based on Equation 1, we use the magma addition in Defini-
tion 1 to compute a constant-size proof.

Definition 5. Proof of Router ri for 1 < i ≤ l: The proof
constructed by the en-route router ri, for 1 < i ≤ l, is defined
as:

Proofi = (r̃i, σ̃i)||ũi,

where we have

(r̃i, σ̃i) = (r̃i−1, σ̃i−1) ? (ri, σi), andũi = ũi−1ui mod p.

Router ri does not immediately compute Proofi after re-
ceiving Proofi−1. Instead, it first verifies Proofi−1. Only if
Proofi−1 is valid does ri need to construct Proofi according
to Definition 5 and forward the valid packet. An invalid
Proofi−1 fails path validation, and ri simply drops the invalid
packet.

D. Proof Verification

As mentioned above, we leverage noncommutative homo-
morphism for proof verification following Equation 3:

F (r̃i, σ̃i) = F (r1, σ1)� F (r2, σ2)� ...� F (ri, σi).

The input of the left side—(r̃i, σ̃i)—is readily available in the
received packet header. The items on the right side, however,
are unknown to other routers rj for j /∈ [1, i], as they have been
integrated into a single constant-size proof. They also cannot
be recomputed by rj , because each router computes its σ using
its secret key. The Atomos proof following Definition 5 can
be verified without the specific values of the individual items
on the right side of the above equation. Its validity can be
determined using only publicly known information such as
router identifiers ri and corresponding public keys kp

i as well
as information carried in received packets such as ũi.

We present the verification process of an Atomos proof
(lines 34-42) in Theorem 2 and prove the soundness of the
method.

Theorem 2. Proofi = (r̃i, σ̃i)||ũi is valid if the following
equation holds:

gσ̃i mod p = gδ(ri)(
∏

1≤j≤i

kp
j )(ũi)

H(h) mod p, (7)

where δ(ri) is defined as follows:

δ(ri) =


0, if i = 1;∑
1≤j≤i−1

∑
1≤k≤j

rk, if 1 < i ≤ l.

Proof. A valid Proofi satisfies the following equation:

F (r̃i, σ̃i) = F (r1, σ1)� F (r2, σ2)� ...� F (ri, σi).



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 9

The left side of this equation can be derived as:

F (r̃i, σ̃i) = (gr̃i , gσ̃i). (8)

The right side can be derived as:

F (r1, σ1)� F (r2, σ2)� ...� F (ri, σi)

= (g
∑

1≤j≤i rj , gδ(ri)g
∑

1≤j≤i σj )

= (gr̃i , gδ(ri)(ũi)
H(h)

∏
1≤j≤i

kp
j ). (9)

To derive Equation 9 from its preceding line, the first item
follows Equation 2 and the second item is derived as follows:

gδ(ri)g
∑

1≤j≤i σj

= gδ(ri)(
∏

1≤j≤i

gk
s
j )(

∏
1≤j≤i

gcjH(h))

= gδ(ri)(
∏

1≤j≤i

kp
j )(ũi)

H(h).

Comparing the pairs in Equation 8 and Equation 9, we
observe that they share the same first item. Therefore, the
equality of the pairs holds if their second items are equal,
that is, if gσ̃i mod p = gδ(ri)(ũi)

H(h)
∏

1≤j≤i k
p
j mod p. This

equation exactly resembles Equation 7.

By Theorem 2, we can verify an Atomos proof following
Equation 7 using the proof items σ̃i, generator g, router
identifiers ri, proof items ũi, and packet digest H(h). Among
this information, σ̃i and ũi are carried in the packet, while g
and ri are locally stored. To further speed up the validation
process, each router can precompute gδ(ri) and

∏
1≤j≤i k

p
j .

E. Selection of the Hash Function

The property required by Atomos for the hash value h is that
h does not have an inverse in Zp−1. As shown in Appendix B,
if h has an inverse in Zp−1, then it is known that an attacker
can forge a valid proof in polynomial time in the number of
bits of p. Since no even integer has an inverse in Zp−1, we
can select a hash function H that always creates an even hash
value h.

F. Proof Shortening by Dynamic Rekeying

We now address the concern of proof length due to the
large discrete logarithm group size (i.e., log2 p, the size/length
of the modulo base p in, for example, Definitions 1-2) of
asymmetric-key encryption. By Definition 5, a proof consists
of three fields: r̃i, σ̃i, and ũi. We first analyze the length of
each field.

• Field r̃i is the summation of the identifiers of en-route
routers prior to router ri (Equation 2). It should be no
greater than the summation of the identifiers of all in-
network routers. Let m denote the number of routers
in the network. It suffices to use log2m bits as router
identifiers. Moreover, the summation of all router iden-
tifiers is m(m−1)

2 , which can be represented by at most
log2

m(m−1)
2 ≈ 2 log2m bits. Given that the number of

routers in the Internet may be less than the number of
connected devices and that each device connects to the

TABLE II
TYPICAL DISCRETE LOGARITHM GROUP SIZES AND CORRESPONDING

SECURITY LEVEL [24] VERSUS PROOF SIZE.

Group Size (bit) 1,024 2,048 3,072 7,680
Secret Key Size (bit) 160 224 256 384
Security Level (bit) 80 112 128 192
Proof Size (bit) 1,415 2,503 3,559 8,295

Internet via an IP address, we can determine an upper
bound of 232 for the number of routers currently in
the IPv4 Internet. Therefore, we consider 32-bit router
identifiers in what follows. The length of the field r̃i has
an upper bound of 2 log2 232 = 64 bits.

• Field σ̃i comprises two factors:
∑

1≤j≤i σj and∑
1≤j≤i−1

∑
1≤k≤j rk (Equation 2). Based on the re-

spective lengths of the parameters involved, the first
factor dominates the overall length. In the first fac-
tor, σi comprises two further factors, ks

i and ciH(h),
where the second factor dominates the overall length.
Let log2(ciH(h)) denote the length of ciH(h). Then,
the length of

∑
1≤j≤i σj is bounded by log2(ciH(h)) +

log2 i. Given that i corresponds to the hop index of a
router, it can be upper bounded by the path length. Let us
consider a path of sufficient length for practical purposes,
of 1,024 hops. Then, we can estimate the length of field
σ̃i as log2(ciH(h))+10 = log2 k

s
i +log2H(h)+10 bits,

because the random number serves as a secret key and is
bounded by the size of ks

i .
• Field ũi is the result of multiplying a series of ui values,

by Definition 5. According to Equation 6, ui is a large
number computed using the modulo base p. Its length can
be upper bounded by the length of p, which is log2 p.

Therefore, the size of an Atomos proof is estimated as:

|Proof| = log2 k
s
i + log2H(h) + 10 + log2 p+ 2 log2m.

Table II lists typical lengths of the group size (i.e., log2 p) and
secret key size (i.e., log2 k

s
i ) and their corresponding security

levels [24] and proof sizes. Given a commonly used 128-bit
security level, an Atomos proof is 445 bytes. However, simply
using a smaller group size weakens the security level. For
example, a 1,024-bit group size yields a much shorter 177-
byte proof and a much lower 80-bit security level. We need to
find a design strategy that shortens the Atomos proof without
sacrificing security.

We propose a dynamic rekeying technique to shorten
Atomos proofs while preserving security. The key idea is
twofold. First, we use a smaller group size to obtain a shorter
proof. Second, we dynamically change the keys of routers.
The dynamic rekeying technique increases both security and
efficiency for the two reasons below.

First, path validation protocols use encryption for unforge-
ability rather than confidentiality. When encryption is used
to protect the confidentiality of messages, a strong security
level is required such that encrypted messages can only be
cracked by an attacker after a long period of time (e.g.,
hundreds of years). However, validation proofs are not secrets
to protect. The major purpose of encryption is to prevent
forgeability. That is, they should be difficult for an attacker
to forge without all the keys for computing them. Since the



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 10

keys are kept on routers and the lifecycle of a router may span
dozens of years at most, the keys can be shortened accordingly
while unnecessarily preserving a security level that will take
hundreds of years to circumvent.

Second, once a packet arrives at the destination with a
validated proof, we no longer require the proof to be secure.
Given that the lifecycle of a packet, a session, or a connection
is much shorter than that of a router, we can further shorten
the keys. However, we cannot simply configure router keys
such that they are only robust within the lifecycle of a
specific connection. Routers usually need to handle a steady
stream of traffic. Once their keys are cracked, an attacker
may easily forge validation proofs for packets thereafter. This
motivates us to dynamically change router keys. If the rekeying
frequency guarantees that the keys are changed before they
can be cracked, Atomos is resistant against forging attacks.
For example, if a router key is configured to be crackable in
10 hours, we can change it every 9 hours.

The rekeying frequency depends on the security level de-
termined by the group size. Our asymmetric-key encryption
scheme is an application of Diffie-Hellman. Breaking it re-
duces to solving the discrete logarithm problem [25]. The best
known algorithm for solving discrete logarithms is the number
field sieve, whose computational complexity can be quantified
by the general number field sieve (GNFS) as [26]:

exp

((
3

√
64

9
+ o(1)

)
(ln p)

1
3 (ln ln p)

2
3

)
= Lp

[
1

3
,

3

√
64

9

]
.

A derivation of the preceding equation can estimate the
security level corresponding to group size n = log2 p as [27]:

security level =
1.923 ∗ 3

√
n ∗ ln 2 ∗ 3

√
[ln(n ∗ ln 2)]2 − 4.69

ln 2
.

In estimating the time to break an encryption, a known
cracking time for a specific security level is usually used as a
reference. A recent reference dates back to 16 June 2016, when
a 768-bit prime module of a discrete logarithm was cracked
after 6,600 core years since February 2015 [28]. A core year
indicates a year of time spent by a single core. According
to Moore’s law, the hardware speed per dollar doubles every
eighteen months. As of July 2019 upon the submission of this
paper, we can estimate the hardware speedup since February
2015 as 23 = 8 times. Therefore, using a current computer to
break the 768-bit prime module would take 6, 600/8 = 825
core years. Given that a 768-bit prime module delivers a 66-bit
security level, an x-bit security level would take 825×2x−66/c
core years to break using a c-core computer. Table III provides
the estimated time needed to break Atomos with various group
sizes by a 10,000-core attacker. A 600-bit group size would
take such a powerful attacker approximately two days to crack.
This time period is already far longer than the time span of
most network connections. It is therefore feasible to set the
rekeying frequency as once every two days.

We further compare the proof size of Atomos and ICING
in Table III. Specifically, when we use dynamically changed
short keys for Atomos, we should compare it with existing
symmetric-key-based solutions integrated with dynamic rekey-
ing. Using shorter symmetric keys, the proofs also become

TABLE III
ESTIMATES OF THE TIME NEEDED TO BREAK ATOMOS WITH VARIOUS
GROUP SIZES BY A 10,000-CORE ATTACKER. WE ALSO COMPUTE THE
NUMBER OF HOPS THAT AN ICING PROOF OF THE SAME SIZE [3] CAN

SUPPORT.
Group Size (bit) 500 600 768 1,024
Security Level (bit) 56 62 66 80
Cracking Time 42.3 min 1.9 days 30.1 days 1351 years
Proof Size (bit) 843 955 1,131 1,415
ICING Hop Count 3 4 4 5

shorter. If a constant-size proof is still much longer than a
linear one given a quite long forwarding path, its necessity
diminishes. An ICING proof consists of three fields: the router
metadata, proof of consent (PoC), and proof of provenance
(PoP). The router metadata include a NodeID, which is used
as the public key of elliptic curve cryptography (ECC), and its
size determines the ICING security level and a corresponding
32-bit tag. The PoC is a 16-bit expiration time indicator.
The PoP comprises a 96-bit proof using PRF-96 and a 32-
bit hardener using PRF-32. Except for the NodeID, the sizes
of the fields are fixed and account for 22 bytes. Now we have

|ICING Proof Size| = |NodeID|+ 22bytes.

As shown in Table III, even when Atomos uses small group
sizes, the size of an ICING proof already exceeds that of
an Atomos proof when the forwarding path to validate is
more than 4 hops. This demonstrates the potential of Atomos’s
constant-size proof in saving bandwidth and computation.

G. Speedup

Throughout proof construction and verification, we have
explored various design choices to accelerate Atomos.

• Atomos requires routers to exchange only their public
keys. Such key exchange needs be done only once after
rekeying, rather than sessionwise, as in existing solutions.

• Atomos uses the SessionID in packet headers to indicate
forwarding paths. By not including on-path router iden-
tifiers in packet headers, we can decrease the time for
routers to encapsulate and parse packets.

• To accelerate proof construction, each router generates
several (x, y) pairs, precomputes gδ and gδy, and stores
the information in a table. After routers change the key, it
can be directly fetched from the stored keys. This saves
initialization time.

• To accelerate proof construction, each router precomputes
and stores the (c, u) pairs. After a (c, u) is used, it can
be fetched directly from the stored pairs. This saves the
time of generating c and performing exponentiation on u.

• To accelerate proof verification, each router precomputes
and stores gδ(ri) and

∏
1≤j≤i k

p
j . Both values can be

directly used for verifying packets in the same session.
• Atomos requires that each router update only valid proofs.

That is, Atomos first verifies the proofs of received
packets, and only if the verification succeeds will a router
update the proof by integrating its own. This avoids time
wasted on updating invalid proofs.

V. SECURITY

In this section, we prove the proof unforgeability property
of Atomos and its robustness against other attacks such as



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 11

packet alteration, injection, and deviation. As with existing
path validation solutions, we also discuss the nonsecurity goals
of Atomos, such as packet dropping and traffic monitoring.

A. Proof Unforgeability

As with existing path validation solutions, the major security
goal of Atomos is proof unforgeability. This guarantees that
an attacker cannot forge a valid proof to pass validation. This
ultimately enforces packet forwarding along specified paths.

Theorem 3. If a probabilistic polynomial-time-bounded at-
tacker cannot compromise the secret keys of routers, Atomos
robustness against forgeability depends on the difficulty of
solving the discrete logarithm problem (DLP). Atomos adopts
a discrete algorithm that has no polynomial-time solution. An
attacker cannot forge a valid proof to pass Atomos with a
probability higher than that of random guessing.

Proof. Given a generator g, a prime number p, router iden-
tifiers ri, router public keys kp

i , and a valid Proofi−1 =
(r̃i−1, σ̃i−1)||ũi−1, we represent the forged proof ´Proofi as:

´Proofi = (ŕi, σ́i)||úi,

where σ́i and úi are forged in polynomial time, while ŕi can
be easily computed by ŕi = r̃i−1 +ri. By Theorem 2, as parts
of a valid proof, σ́i and úi should satisfy:

gσ́i = gδ(ri)(úi)
H(h)

∏
1≤j≤i

kp
j . (10)

Additionally, let σ́i = σ̃i−1 + α + r̃i−1. Then, we can derive
gσ́i in a different way, as follows.

gσ́i = gσ̃i−1+α+r̃i−1

= gδ(ri)(ũi−1)H(h)gα
∏

1≤j≤i−1

kp
j . (11)

Comparing Equation 10 and Equation 11, we have

(úi)
H(h) = (ũi−1)H(h)(kp

i )−1gα. (12)

Given that the hash function H(·) is noninverse, the attacker
cannot exploit an inverse hash to forge a valid proof (Appendix
B). To make the forged proof valid, the attacker needs to
forge both úi and α that satisfy Equation 12. According to
the Atomos design, they should follow the representations of
α = ks

i + cH(h) and úi = ũi−1g
cH(h). Therefore, whether

the forged proof ´Proofi can be computed in polynomial time
depends on the difficulty of solving α in Equation 12, which
resembles a DLP. If we configure Atomos with a discrete
algorithm that has no polynomial-time solution, the attacker
cannot forge a valid proof in polynomial time.

B. Validation Robustness

Although an attacker cannot forge valid proofs, the attack
may try to circumvent validation in various ways, such as by
altering or deviating packets. We now discuss common attacks
addressed by existing solutions and investigate how Atomos
guarantees robustness against them. The security goal is that
an invalid proof must fail verification.
Packet alteration. A modified payload results in a different
DataHash than that carried in the packet header. Payload

alteration can thus be easily detected. If the attacker exploits
a compromised or misbehaving router, the hash function used
for computing the DataHash can also be exploited. With the
hash function, the attacker can compute a valid DataHash for
any modified payload. This cannot circumvent Atomos either,
because an altered DataHash in the packet header fails proof
verification. Specifically, the source constructs its proof using
the DataHash of the original packet. After the DataHash is
modified by an attacker, the attacker needs to forge the source’s
proof using the modified DataHash. Since the source uses its
secret key for proof construction, the attacker cannot forge the
source’s proof unless it compromises its secret key.
Packet injection. An attacker may inject packets with crafted
payloads. To make the injected packets pass verification, the
attacker has to forge valid proofs. This cannot be achieved
by a polynomial-time-bounded attacker, by Theorem 3. The
attacker may also try recording packets with valid proofs and
then injecting these valid packets later. This resembles a replay
attack. The SessionIDs and Timestamps carried in packet
headers are powerful in preventing replay attacks [4]. Routers
can drop packets carrying the SessionIDs of long completed
sessions or Timestamps beyond a reasonable delay. However,
if a packet is replayed soon after it is captured, routers cannot
detect it simply using its SessionID and Timestamp. Detecting
such types of replayed packets is a challenge facing any
network [29]. It is orthogonal to the task of path validation.
A feasible solution is for routers to log the packet digests of
current sessions for a certain time period [29]. Upon receiving
a packet, a router first computes its digest and compares it with
logged ones. Finding a match indicates a replay attack.
Packet deviation. By manipulating a compromised or mis-
behaving router, an attacker may deviate packets from their
specified paths. Take, for example, a packet with SessionID1
and assigned path (ra, rb, rc). Consider a case in which the
router rb deviates the packet to an off-path router, say rd.
Since rd is not on the path corresponding to SessionID1, it
has no locally recorded path coupled with SessionID1. Then,
rd can easily tell that it is not supposed to be a router that
forwards the received packet. Therefore, rd drops the packet
and suppresses the packet deviation attack. The attacker could
replace SessionID1 with, for example, SessionID2, which does
correspond to a forwarding path including rd. In this case, rd is
an intersection of the two paths of SessionID1 and SessionID2.
Let (re, rd, rf ) denote SessionID2’s corresponding path. For
the deviated packet to pass proof verification on rd, rb has to
forge a proof that re has validated the packet. Because of the
proof nonforgeability property (Theorem 3), rb cannot forge
re’s proof without compromising re’s secret key.

C. Nonsecurity Goals

As with existing solutions [3], [4], Atomos does not address
the following packet forwarding and processing misbehaviors:

• A misbehaving router may arbitrarily drop packets. This
is usually addressed by fault localization protocols that
detect erroneous routers [30].

• A misbehaving router may copy and forward packets
of interest to certain servers for traffic analysis. Such
misbehaviors can be stealthy and hard to detect.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 12

• A misbehaving router may simply verify and update
proofs without providing the process it is supposed to
perform on the packet. For example, when a compromised
router is connected to a middlebox, the router may for-
ward packets without submitting them to the middlebox
for security checks [31].

• A misbehaving router may disturb key distribution. The
design focus of path validation is essentially that, given
shared keys and allocated paths, end-hosts and routers
should collaborate to detect and discard packets that have
not followed the allocated paths. We refer to counter-
measures in the literature to secure the key distribution
process [30], [32]; this is orthogonal to path validation.

VI. IMPLEMENTATION

We implement Atomos using Click routers [33]. A
Click router comprises a number of packet processing
modules called elements. The packet validation logics of
Atomos function through a new element, Atomos. Fol-
lowing Algorithm 1, the three key functions we im-
plement are initialization, construction, and
verification. Since these functions involve computation
over large numbers (e.g., 1,024 bits), we use the BIGNUM
structure and related operations from the OpenSSL toolkit.
During initialization, we aim to generate router keys.
We first use BN_new() to allocate and initialize BIGNUM
structures to store the large numbers generated later. Then, we
call BN_generate_prime() to generate the random prime
p and private keys. The prime p is then used to compute the
generator g. All random numbers that will be used can be
generated by calling BN_rand(). For both construction
and verification, we need to include the DataHash,
SessionID, and Timestamp in the computation. One note of
caution is that we use BN_mod_mul() for large-number
multiplication without overflow. Following the standard el-
ement framework, these functions should be called by the
simple_action function, which is the default function in
an element to process packet headers and payloads.

To enable Atomos, we need to call the Atomos element in
the configuration file. For ease of implementation, we inherit
it from the configuration of fake-iprouter in Click.
Since path validation only processes packet headers, we put
the Atomos element after the CheckIPHeader element.
Specifically, a packet first goes through the Strip element
to remove the Ethernet header and then the CheckIPHeader
element to check header correctness. According to Figure 1,
the Atomos header is located between the IP header and
TCP header. Therefore, we call the Atomos element after
CheckIPHeader. If the proof validation succeeds, we up-
date the proof. Both verification and update are defined in
the Atomos element. Packets failing verification are dropped
while verified packets are forwarded to the next-hop router.
To forward a valid packet to the next hop, we call the rt
element, which performs static IP lookup.

VII. EVALUATION

In this section, we evaluate Atomos in comparison with
ICING [3] under a generic path-validation framework re-

quiring pairwise trust and packet granularity. We compare
Atomos with ICING [3], OPT [4], and OSV [14], [15].
We, however, do not compare Atomos with PPV because
PPV does not enforce per-packet validation as all the other
solutions do. We use a 4-core server with Intel Xeon Skylake
6146 CPUs (3.2 GHz) and 8 GB memory. Test packets are
generated using the InfiniteSource function integrated
in Click. All reported statistics are averaged over 100 runs.
The results demonstrate that Atomos provides short proofs
and fast validation.

A. Proof Size

In addition to the preliminary statistics of proof size in
Section IV-F, we present a more comprehensive measurement
and analysis. As shown in Figure 2(a)-(d), Atomos guarantees
a constant-size proof, which becomes increasingly shorter
than that of ICING as the forwarding path exceeds a fairly
small value (e.g., 3 hops under a 56-bit security level and 5
hops under an 80-bit security level). The header space saved
increases with path length (Figure 2(e)-(h)). For example,
given a median length of network paths of approximately
16 hops [21], Atomos saves 81.71% of the header space in
comparison with ICING under a 56-bit security level, while
the saved header space still accounts for as much as 73.66%
under an 80-bit security level. This demonstrates the potential
of Atomos in shortening the packet size and, in turn, saving
network bandwidth.

Although OPT and OSV do not enforce pairwise trust
among all end-hosts and routers, we investigate the overhead
induced by their extra validation proofs. The proof field of
OPT consists of the DataHash, SessionID, Timestamp, PVF,
and OPVs. The number of OPVs is determined by the number
of hops in the forwarding path, and each OPV field is 16 bytes.
All of these parts are 16 bytes except the Timestamp, which is
4 bytes; the proof size of OPT is (52+16n) bytes, where n is
the number of hops. According to Table II, at the same security
level, Atomos has a fixed proof size of 3,559 bits. When the
path length exceeds 25 hops, OPT has a longer proof.

The OSV header is slightly more complicated than that
of OPT; it consists of 12-byte eigenvalues (version, header
length, unused, credential length, user id, row index, and
matrix index), a 16-byte credential c, an 80-byte PVF, and
2 bytes for each OV. Its total proof size is (108 + 2n) bytes,
where n represents the number of nodes in the path. At a
security level of 128 bits, it would take 168 hops for Atomos
to reach OSV. However, as we discussed in Section IV-F,
Atomos uses dynamic rekeying so that we can maintain the
same security level while using shorter public keys. In this
way, we can drastically reduce the communication overhead.
For example, if Atomos uses a 1,024-bit public key and a 160-
bit private key, the total proof size would be compressed to
1,415 bits, and it would only need 8 hops to outperform OPT
and 35 hops to reach OSV.

For storage overhead, each router in Atomos needs to store
its own private key and all the public keys of other on-path
routers in a local table. ICING and OPT both calculate the
symmetric key in the forwarding process so that they avoid
storing all the symmetric keys locally. However, this causes



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 13

4 8 12 16
path length (hop)

0

1

2

3

4

5

6
pr

oo
f s

iz
e 

(1
00

0 
bi

ts
)

(a) security level: 56 bit

Atomos
ICING

4 8 12 16
path length (hop)

0

1

2

3

4

5

6

pr
oo

f s
iz

e 
(1

00
0 

bi
ts

)

(b) security level: 62 bit

Atomos
ICING

4 8 12 16
path length (hop)

0

1

2

3

4

5

6

pr
oo

f s
iz

e 
(1

00
0 

bi
ts

)

(c) security level: 66 bit

Atomos
ICING

4 8 12 16
path length (hop)

0

1

2

3

4

5

6

pr
oo

f s
iz

e 
(1

00
0 

bi
ts

)

(d) security level: 80 bit

Atomos
ICING

4 8 12 16
path length (hop)

400

300

200

100

0

100

pr
oo

f-s
iz

e 
de

cr
ea

se
m

en
t (

pe
rc

en
t)

(e) security level: 56 bit

4 8 12 16
path length (hop)

400

300

200

100

0

100

pr
oo

f-s
iz

e 
de

cr
ea

se
m

en
t (

pe
rc

en
t)

(f) security level: 62 bit

4 8 12 16
path length (hop)

400

300

200

100

0

100

pr
oo

f-s
iz

e 
de

cr
ea

se
m

en
t (

pe
rc

en
t)

(g) security level: 66 bit

4 8 12 16
path length (hop)

400

300

200

100

0

100

pr
oo

f-s
iz

e 
de

cr
ea

se
m

en
t (

pe
rc

en
t)

(h) security level: 80 bit

Fig. 2. Comparison of proof sizes between Atomos and ICING.

0 5 10 15 20
hop index

0

20

40

60

80

100

120

140

160

pr
oo

f v
er

ifi
ca

tio
n 

tim
e 

(
s)

(a) 8-hop path

security level: 56-bit
security level: 66-bit
security level: 80-bit

0 5 10 15 20
hop index

0

20

40

60

80

100

120

140

160
(b) 16-hop path

security level: 56-bit
security level: 66-bit
security level: 80-bit

5 10 15 20
hop index

0

20

40

60

80

100

120

140

160
(c) 20-hop path

security level: 56-bit
security level: 66-bit
security level: 80-bit

0 5 10 15 20
hop index

0

2

4

6

8

10

12

14

16

pr
oo

f u
pd

at
e 

tim
e 

(
s)

(d) 8-hop path

security level: 56-bit
security level: 66-bit
security level: 80-bit

0 5 10 15 20
hop index

0

2

4

6

8

10

12

14

16
(e) 16-hop path

security level: 56-bit
security level: 66-bit
security level: 80-bit

5 10 15 20
hop index

0

2

4

6

8

10

12

14

16
(f) 20-hop path

security level: 56-bit
security level: 66-bit
security level: 80-bit

Fig. 3. Proof verification and update time with varying path lengths and
security levels.
delays in packet processing and forwarding. Moreover, they
also need to store other data, for example, computation primers
such as ECC for ICING and a public/private key pair for
OPT. OSV is similar to Atomos in this regard. It also needs
to store secret keys locally. In addition, the source node of
OSV needs to store an entire n× n Hadamard matrix locally,
while other nodes need to store the corresponding matrix rows.
This is a large storage overhead. ICING requires every router
to exchange secret keys to guarantee safety, which also costs
considerable storage overhead. OPT and OSV make a stronger
security assumption to avoid this. Although Atomos may cause
larger storage overhead, this is necessary to save bandwidth

TABLE IV
PROOF CREATION TIME (µS) AT THE SOURCE WITH VARYING SECURITY

LEVELS. THE LEVEL IS INSENSITIVE TO PATH LENGTH.
Security Level (bit) 56 62 66 80 112 128
Creation Time (µs) 1.18 1.28 1.37 1.42 1.72 2.54

TABLE V
PROOF CREATION TIME (µS) AT THE SOURCE WITH VARYING PATH

LENGTHS.
Path length (hops) 16 20
OPT Creation Time (µs) 11.5 13.2
OSV Creation Time (µs) 14.0 23.0

for data and increase the delivery efficiency.

B. Processing Time

Atomos promises not only shorter proofs but also faster val-
idation, especially for long forwarding paths. The processing
time of a proof is determined by three parts: the creation time,
verification time, and update time.
Creation time. As shown in Table IV, Atomos can deliver ex-
tremely fast proof creation. This is attributed to two properties
of Atomos. First, using asymmetric-key encryption, Atomos
enables each router to generate only one proof for all other
routers. Therefore, the source need not compute different
proofs for each of the en-route routers, as required by ICING.
This also makes the creation time insensitive to path length.
Second, we perform as much precomputation as possible to
promote speedup (Section IV-G). Precomputed data need not
be recomputed when processing different packets. Since the
proof contains fields related to the group size p (Section IV-C),
the time for proof creation increases with the security level.
Verification and update time. A router verifies a proof with
Equation 3 using σ̃i−1 and ũi−1. These two parameters are
generated by the router’s previous hop and are carried in the
packet header. If the verification succeeds, the router updates
the proof following Definition 5. Figure 3(a)-(c) report the time
for proof verification given various security levels on an 8-,



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 14

TABLE VI
VERIFICATION AND UPDATE TIME (µS) FOR 16 HOPS.

Node ID 1 4 8 12 16
OPT (µs) 5.06 4.57 4.79 4.66 4.81
OSV (µs) 1.58 1.58 1.58 1.58 1.58

16-, and 20-hop path, respectively. Figure 3(d)-(f) report the
corresponding update time. A higher security level requires
more processing time, and which hop a router is located at
in a path has little effect. As Atomos uses a constant-size
proof, each hop processes a proof of the same scale. The
proof processing time is therefore relatively constant across the
forwarding path. In contrast, the verification time of ICING
is proportional to the path length. A router with hardware
acceleration takes (2.6x + 24.4)µs to verify a proof at an
80-bit security level, where x is the hop index of the router.
Our software-based implementation of Atomos is faster when,
for example, a forwarding path exceeds 15 hops.

C. Comparison with OPT and OSV

We further compare the time cost of Atomos with that of
OPT and OSV, which do not enforce pairwise trust. As with
the performance comparison of OPT and OSV with ICING,
we expect that Atomos will be slower because pairwise trust
incurs more computation for verifying proofs. However, we do
not consider this a fair comparison; we provide the comparison
solely to demonstrate the extent to which relaxed security can
improve performance.
Creation time. As Table V shows, both OPT and OSV show
sensitivity to path length, and OSV is much slower, as it needs
to generate an Hadamard matrix at this stage. Both of them
are far slower than Atomos, which does not require the source
to compute proofs for other routers and is insensitive to path
length. For example, at the same security level of 128 bits
and the same path length of 16 hops, Atomos only needs
2.54 µs to create a packet, while OPT needs 11.5 µs and
OSV needs 14.0 µs. This shows the benefit of the simplified
precomputation of Atomos.
Verification and update time. OPT and OSV do not have
the same security design as ICING and Atomos. Routers in
ICING and Atomos do not need to trust each other, while OPT
and OSV assume otherwise to avoid possible inefficiencies and
vulnerabilities. If they followed the same security requirement
as ICING and Atomos, every pair of routers would need to
exchange secret keys; this would cost additional resources and
decrease efficiency. This is why OPT and OSV are faster than
Atomos. For a 16-hop path (Table VI), OPT takes 4.7 µs on
average, and OSV only needs 1.58 µs. The results on a 20-
hop path show the same trend (Table VII). In contrast, Atomos
needs approximately 60 µs to process a node. However, since
Atomos has a stronger security guarantee than ICING does, it
can be used in a more suspicious environment where end-hosts
and routers do not necessarily trust each other.

VIII. DISCUSSION

A. Router Implementation and Internet Deployment

We temporarily use Click routers [33] to emulate routers
following ICING [4] and do not integrate them into the real
Internet. To the best of our knowledge, all existing path
validation solutions do not use real Internet environments

TABLE VII
VERIFICATION AND UPDATE TIME (µS) FOR 20 HOPS.

Node ID 1 4 8 12 16 20
OPT (µs) 5.21 4.66 4.66 4.68 4.63 4.67
OSV (µs) 2.51 2.51 2.51 2.51 2.51 2.51

for experiments due to conceivable challenges, although they
may implement hardware routers. For example, ICING [3] is
also implemented on a field-programmable gate array (FPGA)
board. We find that OSV [14], [15] provides a feasible way to
create a small and enforceable deployment of path validation in
the Internet. Specifically, by jointly considering router imple-
mentation and Internet deployment, we can use the ExoGENI
[34] platform, featuring routers across the globe. ExoGENI
is an evolved global environment for network innovations
(GENI) testbed to support open cloud computing and dynamic
circuit fabrics [34]. Once granted access, one can deploy
packet processing logics to the accessed routers.

B. Network Dynamics

The process of handling network dynamics can be divided
into two phases. The first is allocating paths based on network
dynamics. The second is validating packets forwarded along
the newly allocated paths. The latter focuses on path validation
designs themselves. That is, no matter how forwarding paths
are allocated, existing path validation protocols simply take the
allocated paths as input and enforce packet forwarding along
them. In other words, handling network dynamics is not the
technical focus of path validation. Instead, it focuses more on
making routing policies, especially for the first phase—path
allocation. This should be orthogonal to path validation.

Path validation has two ways to react to network dynamics
during packet forwarding. Specifically, if the allocated for-
warding path expires when some packets are still en route
on it, we can either 1) allow the expired forwarding path
to be valid for the en-route packets as well the current
session or 2) let the destination discard the en-route packets
upon receiving them and let the source retransmit them. The
first method is straightforward to enforce. When the current
session ends and the next session begins, the source simply
follows the new forwarding path for building path proofs.
The packets will also be forwarded along the new path. The
second method is slightly more complex, since it involves
synchronization between the source and destination as well
as packet retransmission. Specifically, once the destination is
notified of a newly allocated path, it discards received packets
that follow the original path. If the transmission protocol does
not require the destination to send acknowledgments of non-
discarded packets to the source, the destination may use ad-
ditional packet-drop feedback. Upon receiving such feedback,
the source retransmits the dropped packets embedded with new
path proofs.

Clearly, path changes due to network dynamics impose
overhead on path validation. Short sessions are usually recom-
mended to limit the impact of network dynamics on perfor-
mance [7]. This is because, when network dynamics enforce
path changes, end-hosts can quickly adapt to new paths. A
short gap between the time a new path is issued and the time
it takes effect has little impact on performance.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 15

C. Applicability of Path Validation

For any path validation solution [3], [4], [14]–[16], effi-
ciency enhancements bring greater benefit to networks with
relatively long forwarding paths on average. For end-to-end
communication, especially for routers between end-hosts, it
is common that a forwarding path spans from several to
dozens of hops. The evaluation results in Section VII show
that Atomos becomes more efficient than ICING when the
forwarding path exceeds several hops (e.g., 3 or 4).

However, the efficiency benefit of a path validation solution
may not be obvious for services with extremely short path
lengths. Consider the content delivery network (CDN), for
example. To speed up content distribution, CDN providers
usually deploy many content delivery servers across various
ISPs. These servers hold replicated content so that users can
obtain the requested content from the nearest content delivery
server. According to a recent measurement study [35], more
than 60% of end-user prefixes are directly connected to large
content providers. In other words, these end-users are just
one hop away from the content delivery servers. We consider
path validation to be unsuitable for such scenarios. Traditional
authentication suffices for the security needs of such one-hop
end-to-end communication.

IX. CONCLUSION

We have studied how to overcome the efficiency barriers of
network path validation using constant-size proofs. Existing
solutions use linear-scale proofs in terms of path length.
The longer a forwarding path is, the larger the proofs that
routers need to handle and packets need to carry. This brings
heavy overhead in terms of both packet-header space and
processing time. To address these limitations, we construct
a noncommutative homomorphic asymmetric-key encryption
scheme that offers constant-size validation proofs. We design
and implement Atomos based on the proposed encryption
scheme. Various optimization techniques are explored to gain
efficiency without sacrificing security. Both analytical and
experimental results show that Atomos provides not only
shorter proofs but also faster validation than existing solutions.
In future work, we plan to augment Atomos with hardware
acceleration [3] and adapt it to multipath routing [36].

ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation of China under Grant 61402404, the Natural
Science Foundation of Zhejiang Province under grant No.
LY19F020050, the National Natural Science Foundation of
under Grant No. 61772236, Zhejiang Key RD Plan under
Grant No. 2019C03133, the Alibaba-Zhejiang University Joint
Institute of Frontier Technologies, Research Institute of Cy-
berspace Governance in Zhejiang University, and Leading
Innovative and Entrepreneur Team Introduction Program of
Zhejiang. The authors would also like to thank the Editors and
Reviewers of IEEE Transactions on Forensics and Security and
AJE Editors for their review efforts and helpful feedback.

REFERENCES

[1] IRTF, “Path aware networking research group panrg,” 2019. [Online].
Available: https://irtf.org/panrg.

[2] IETF, “Path aware networking rg (panrg),” 2019. [Online]. Available:
https://datatracker.ietf.org/rg/panrg/about/.

[3] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and
A. Seehra, “Verifying and enforcing network paths with icing,” in
CoNEXT, 2011.

[4] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig,
“Lightweight source authentication and path validation,” in ACM SIG-
COMM, vol. 44, no. 4, 2014, pp. 271–282.

[5] D. Barrera, L. Chuat, A. Perrig, R. M. Reischuk, and P. Szalachowski,
“The scion internet architecture,” Communications of the ACM, 2017.

[6] B. Trammell, J.-P. Smith, and A. Perrig, “Adding path awareness to
the internet architecture,” IEEE Internet Computing, vol. 22, no. 2, pp.
96–102, 2018.

[7] K. Bu, Y. Yang, A. Laird, J. Luo, Y. Li, and K. Ren, “What’s (not)
validating network paths: A survey,” arXiv:1804.03385, 2018.

[8] E. Zmijewski, “You can’t get there from here.” 2008. [Online].
Available: https://dyn.com/blog/you-cant-get-there-from-here-1/

[9] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig, “Hornet:
High-speed onion routing at the network layer,” in CCS, 2015.

[10] Z. Liu, H. Jin, Y.-C. Hu, and M. Bailey, “Middlepolice: Toward
enforcing destination-defined policies in the middle of the internet,” in
ACM CCS, 2016, pp. 1268–1279.

[11] K. L. Calvert, J. Griffioen, and L. Poutievski, “Separating routing and
forwarding: A clean-slate network layer design,” in IEEE BROADNETS,
2007, pp. 261–270.

[12] D. Levin, Y. Lee, L. Valenta, Z. Li, V. Lai, C. Lumezanu, N. Spring,
and B. Bhattacharjee, “Alibi routing,” in ACM SIGCOMM, 2015.

[13] J. Katz and A. Lindell, “Aggregate message authentication codes,” Topics
in Cryptology–CT-RSA 2008, pp. 155–169, 2008.

[14] H. Cai and T. Wolf, “Source authentication and path validation with
orthogonal network capabilities,” in INFOCOM WKSHPS, 2015.

[15] ——, “Source authentication and path validation in networks using
orthogonal sequences,” in IEEE ICCCN, 2016, pp. 1–10.

[16] B. Wu, K. Xu, Q. Li, Z. Liu, Y.-C. Hu, M. J. Reed, M. Shenk, and
F. Yang, “Enabling efficient source and path verification via probabilistic
packet marking,” in IWQoS, 2018.

[17] P. K. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy,
D. Wetherall et al., “Improving the reliability of internet paths with
one-hop source routing.” in OSDI, 2004.

[18] Z. Li, D. Levin, N. Spring, and B. Bhattacharjee, “Internet anycast:
performance, problems, & potential.” in ACM SIGCOMM, 2018.

[19] A. Fei, G. Pei, R. Liu, and L. Zhang, “Measurements on delay and
hop-count of the internet,” in GLOBECOM, 1998.

[20] F. Begtasevic and P. Van Mieghem, “Measurements of the hopcount in
internet,” in PAM, 2001.

[21] V. Paxson, “End-to-end routing behavior in the internet,” in ACM
SIGCOMM, 1996, pp. 25–38.

[22] B. Sengupta, Y. Li, K. Bu, and R. H. Deng, “Privacy-preserving network
path validation,” Cryptology ePrint Archive, Report 2019/407, 2019,
https://eprint.iacr.org/2019/407.

[23] R. Motwani and P. Raghavan, Randomized algorithms. Cambridge
university press, 1995.

[24] Keylength - NIST Report on Cryptographic Key Length and Cryptope-
riod (2016). [Online]. Available: https://www.keylength.com/en/4/

[25] Diffie–Hellman key exchange - Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Diffie-Hellman key exchange

[26] General number field sieve - Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/General number field sieve

[27] C. NIST, “Implementation guidance for fips pub 140-2 and the crypto-
graphic module validation program, may. 2019.”

[28] T. Kleinjung, “Computation of a 768-bit prime field discrete
logarithm,” 2016. [Online]. Available: https://listserv.nodak.edu/cgi-
bin/wa.exe?A2=NMBRTHRY;a0c66b63.1606

[29] T. Lee, C. Pappas, A. Perrig, V. Gligor, and Y.-C. Hu, “The case for
in-network replay suppression,” in ACM AsiaCCS, 2017, pp. 862–873.

[30] C. Basescu, Y.-H. Lin, H. Zhang, and A. Perrig, “High-speed inter-
domain fault localization,” in IEEE S&P, 2016, pp. 859–877.

[31] K. Bu, Y. Yang, Z. Guo, Y. Yang, X. Li, and S. Zhang, “Flowcloak:
Defeating middlebox-bypass attacks in software-defined networking,” in
IEEE INFOCOM, 2018, pp. 396–404.

[32] B. Wu, K. Xu, Q. Li, B. Liu, S. Ren, F. Yang, M. Shen, and K. Ren,
“Rfl: Robust fault localization on unreliable communication channels,”
Computer Networks, vol. 158, pp. 158–174, 2019.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 16

[33] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems, vol. 18,
no. 3, pp. 263–297, 2000.

[34] I. Baldine, Y. Xin, A. Mandal, P. Ruth, C. Heerman, and J. Chase, “Ex-
ogeni: A multi-domain infrastructure-as-a-service testbed,” in Testbeds
and Research Infrastructure. Development of Networks and Communi-
ties, 2012, pp. 97–113.

[35] Y.-C. Chiu, B. Schlinker, A. B. Radhakrishnan, E. Katz-Bassett, and
R. Govindan, “Are we one hop away from a better internet?” in IMC,
2015, pp. 523–529.

[36] W. Xu and J. Rexford, “Miro: multi-path interdomain routing,” in ACM
SIGCOMM, 2006.

APPENDIX

A. Proofs of Function Properties

Lemma 1. Both the additive magma (Zp−1 × Zp−1, ?) and
the multiplicative magma (Z∗

p × Z∗
p,�) are noncommutative

given operands (a1, b1) and (a2, b2) with a1 6= a2.

Proof. The additive magma is noncommutative if (a1, b1) 6=
(a2, b2), and we have (a1, b1) ? (a2, b2) 6= (a2, b2) ? (a1, b1)
for some values of a1 and a2. According to the definition of
? in Definition 1, we have:

(a1, b1) ? (a2, b2) = (a1 + a2, a1 + b1 + b2). (13)
(a2, b2) ? (a1, b1) = (a1 + a2, a2 + b1 + b2). (14)

Given the constraint of a1 6= a2 in the statement, we can derive
the inequality between the right sides of Equation 13 and
Equation 14 because (a1+b1+b2) 6= (a2+b1+b2). Therefore,
we demonstrate that (a1, b1)?(a2, b2) 6= (a2, b2)?(a1, b1) and
prove the noncommutativity of the additive magma.

Similarly, we prove the noncommutativity of the multiplica-
tive magma (Z∗

p × Z∗
p,�) as follows:

(a1, b1)� (a2, b2) = (a1a2, a1b1b2). (15)
(a2, b2)� (a1, b1) = (a1a2, a2b1b2). (16)

Given the constraint of a1 6= a2, we can derive the inequality
between the right sides of Equation 15 and Equation 16
because a1b1b2 6= a2b1b2. Therefore, we demonstrate that
(a1, b1) � (a2, b2) 6= (a2, b2) � (a1, b1) and prove the non-
commutativity of the multiplicative magma.

Lemma 2. The function F defined in Definition 3 is a
noncommutative homomorphic function.

Proof. First, we prove the homomorphism of function F . A
homomorphic function h should satisfy the property:

h(x op1 y) = h(x) op2 h(y),

where x and y denote two inputs and op1 and op2 denote two
operations that may or may not be identical. Based on the
definition of F , we prove its homomorphism using the fact
that it satisfies the following equation:

F ((a1, b1) ? (a2, b2)) = F (a2, b2)� F (a1, b1). (17)

Equation 17 can be derived as follows:

F ((a1, b1) ? (a2, b2)) = F (a1 + a2, a1 + b1 + b2)

= (ga1+a2 , ga1+b1+b2)

= F (a1, b1)� F (a2, b2). (18)

Second, we prove the noncommutativity of function F by
showing that F ((a1, b1) ? (a2, b2)) 6= F ((a2, b2) ? (a1, b1)).
Since F ((a1, b1)?(a2, b2)) was already derived in Equation 18,
we now derive F ((a2, b2) ? (a1, b1)) as follows:

F ((a2, b2) ? (a1, b1)) = F (a2 + a1, a2 + b2 + b1)

= (ga2+a1 , ga2+b2+b1)

= (ga2ga1 , ga2gb2gb1)

= F (a2, b2)� F (a1, b1). (19)

By Lemma 1, the multiplicative magma Z∗
p × Z∗

p,�) is
noncommutative. This directly yields the inequality between
the right sides of Equation 18 and Equation 19, that is,
F (a1, b1) � F (a2, b2) 6= F (a2, b2) � F (a1, b1). This further
yields the following inequality between their left sides:

F ((a2, b2) ? (a1, b1)) 6= F ((a2, b2) ? (a1, b1)). (20)

With Equation 20, we prove the noncommutativity of F .

From Lemma 1 and Lemma 2, we have the following result:
Theorem 1. A noncommutative homomorphic asymmetric-
key encryption scheme can be constructed from the additive
magma (Zp−1×Zp−1, ?), multiplicative magma (Z∗

p×Z∗
p,�),

and homomorphic function F : (Zp−1 × Zp−1, ?) → (Z∗
p ×

Z∗
p,�).

Proof. We construct an encryption scheme as follows:
• A proof (ai, bi) ∈ Zp−1 × Zp−1 is created by each user

(e.g., a router) ri.
• To aggregate the proofs of r1, ..., ri, (ãi, b̃i) = (a1, b1) ?
... ? (ai, bi) is computed.

• To verify the aggregated proof (ãi, b̃i), the equality
F ((ãi, b̃i)) = F ((a1, b1)) � ... � F ((ai, bi)) is checked
to see whether it holds.

The construction yields an asymmetric-key encryption scheme
with F ((ai, bi)) = (f(ai), f(bi)) = (gai , gbi) as the public
key and (ai, bi) as the secret key of ri. From Lemma 1
and Lemma 2, the encryption scheme is noncommutative
homomorphic if integers a1, ..., ai are selected such that for
any two integers aj1 and aj2 with 1 ≤ j1 6= j2 ≤ i, we have
aj1 6= aj2 mod (p−1). This can be easily satisfied. For exam-
ple, routers have different identifiers, and such router-specific
information can be used to form the integers a1, ..., ai.
B. Attack on the Inverse Hash

An inverse of h in Zp−1 can be computed in polynomial
time in b(p), the number of bits in p. We sketch the proof
by constructing a polynomial-time attack using H(·) with an
inverse in Zp−1. The generic attack goal is to have router ri be
the attacker. Upon receiving a valid proof (r̃i−1, σ̃i−1)||ũi−1

from its previous-hop router ri−1, ri can follow the attack to
forge a valid proof to its next-hop router ri+1. Specifically,
the attack consists of five steps.
Step 1: Select an arbitrary α ∈ Zp−1.
Step 2: Compute the inverse (H(h))−1 of H(h) in Zp−1.
Step 3: Compute β = (gα(kp

i )−1)(H(h))−1

.
Step 4: Compute σ́i = α+ σ̃i−1 + r̃i−1, úi = βũi−1.
Step 5: Compute r̃i using r̃i−1 following Equation 2.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. YY, MONTH 2019 17

The attacker ri then sends the forged proof (r̃i−1, σ́i)||úi to
ri+1. By Theorem 2, the forged proof can pass verification if:

gσ́i mod p = gδ(ri)(
∏

1≤j≤i

kp
j )(úi)

H(h) mod p. (21)

The left side of Equation 21 can be derived as:

gσ́i = gα+σ̃i−1+r̃i−1 = g
α+

∑
1≤j≤i−1

σj+δ(ri)

.

The right side of Equation 21 can be derived as:

gδ(ri)(
∏

1≤j≤i

kpj )(úi)
H(h) = gδ(ri)(

∏
1≤j≤i−1

kpj )kpi (βũi−1)H(h)

= gδ(ri)(
∏

1≤j≤i−1

kpj )(ũi−1)H(h)kpi β
H(h)

= g
δ(ri)+α+

∑
1≤j≤i−1

σj

.

The left side is equal to the right side. This proves that
Equation 21 holds and the forged proof can pass verification.

Anxiao He is currently pursuing the undergraduate
degree with the College of Computer Science and
Technology, Zhejiang University. His research inter-
ests include network security.

Kai Bu received the B.Sc. and M.Sc. degrees in
computer science from the Nanjing University of
Posts and Telecommunications, Nanjing, China, in
2006 and 2009, respectively, and the Ph.D. degree in
computer science from The Hong Kong Polytechnic
University, Hong Kong, in 2013. He is currently
an Associate Professor with the College of Com-
puter Science and Technology, Zhejiang University,
Hangzhou, China. His research interests include
network security and computer architecture. He is
a member of the ACM, the IEE, and the CCF. He

was a recipient of the Best Paper Award of IEEE/IFIP EUC 2011 and the
Best Paper Nominee of IEEE ICDCS 2016.

Yucong Li is currently pursuing the undergraduate
degree with the College of Computer Science and
Technology, Zhejiang University. His research inter-
ests include network security.

Eikoh Chida received his B.Eng. degree in informa-
tion engineering and M.S. and Ph.D. degrees in in-
formation science from Tohoku University, Japan, in
1993, 1995 and 1998, respectively. He is a professor
the Department of Electrical Engineering, Ichinoseki
National College of Technology. His research inter-
ests include cryptology and related mathematics.

Qianping Gu received his Ph.D. degree in computer
science from Tohoku University, Japan. He is a pro-
fessor at the School of Computing Science, Simon
Fraser University, Canada. His research interests
include algorithms and computation, network com-
munications and algorithms, parallel and distributed
computing.

Kui Ren received the Ph.D. degree from the Worces-
ter Polytechnic Institute. He is currently a Professor
with the Institute of Cyberspace Research, Zhejiang
University, and the Director of the UbiSeC Labora-
tory, State University of New York at Buffalo (UB).
He has published 200 papers in peer-reviewed jour-
nals and conferences. His current research interest
spans cloud and outsourcing security, wireless and
wearable systems security, and mobile sensing and
crowdsourcing. He is a Distinguished Lecturer of
the IEEE, a member of ACM, and a past Board

Member of the Internet Privacy Task Force, State of Illinois. He received
several best paper awards, including IEEE ICDCS 2017, IWQoS 2017, and
ICNP 2011. He received the IEEE CISTC Technical Recognition Award in
2017, the UB Exceptional Scholar Award for Sustained Achievement in 2016,
the UB SEAS Senior Researcher of the Year Award in 2015, the Sigma Xi/IIT
Research Excellence Award in 2012, and the NSF CAREER Award in 2011.
He currently serves on the editorial boards of the IEEE TRANSACTIONS ON
DEPENDABLE AND SECURE COMPUTING, the IEEE TRANSACTIONS
ON SERVICE COMPUTING, the IEEE TRANSACTIONS ON MOBILE
COMPUTING, the IEEE WIRELESS COMMUNICATIONS, the IEEE IN-
TERNET OF THINGS JOURNAL, and the SpingerBriefs on Cyber Security
Systems and Networks.


