Anxiao He

Zhejiang University | (86) 18958074358 | email: zjuhax@zju.edu.cn | homepage: <u>ax-he.github.io</u>

EDUCATION

Zhejiang University	Hangzhou, China
Ph.D. in Computer Science	Sep. 2020 - Jun. 2025 (Expected)
Network Security Group, Lab of Cyber Science and Technology, Advisor: Prof. Kai E	Bu
Zhejiang University	Hangzhou, China
B.Eng. in Computer Science	Sep. 2016 - Jun. 2020
 Chu Kochen Honors College (top 5% of freshmen) 2018-2019 First-class scholarship for excellent student in basic discipline (top 25% 2018-2019 Third-class scholarship for excellent student (top 20% of college) 2020 Excellent thesis design for undergraduates 2019 Gold medal for International Genetically Engineered Machine Competition (i 	of class) GEM)
Research Experience	
Zhejiang University (Network Security Group, Lab of Cyber Science and Technology)	Hangzhou, China
Ph.D., Advisor: Prof. Kai Bu	Sep. 2020 - Present
Hummingbird: Dynamic Path Validation with Hidden Equal-Probability Sampling (received by TIFS)	
 Focus on the problem of path validation being hard to deploy in dynamic path env Propose a hidden equal-probability sampling technique. Present Hummingbird as the first validation solution over fully dynamic paths. 	ironments.
SwiftParade: Anti-burst Multipath Validation (under review in TDSC)	
 Focus on the problem of path validation being easy to cause packet loss due to burst arrivals in multipath routing. Propose a two-factor encryption scheme to defend against the second residual module attack. Present SwiftParade as the first solution toward anti-burst multipath validation. 	
Symphony: Path Validation at Scale (under review)	
 Focus on the problem that path validation has to trade off security for efficiency. Propose an aggregate validation technique to amortize the overhead. Propose a packet reaggregation technique to mitigate retransmission due to packet 	et loss.
Zhejiang University (Network Security Group, Lab of Cyber Science and Technology)	Hangzhou, China
Research Assistant, Advisor: Prof. Kai Bu	May. 2018 - Jun. 2020
Atomos: Constant-size path validation proof (received by TIFS)	
 Identify linear-scale proofs as the essential barrier to increasing the efficiency of path validation. Propose a noncommutative homomorphic asymmetric-key encryption scheme that offers a constant-size proof. Explore design strategies to improve efficiency without sacrificing security. 	
Divide and Conquer: Efficient Multi-path Validation with ProMPV (received by Qshine2019)	
 Focus on the adaptability of path validation in multipath environment. 	
Propose a proactive multi-path validation technique in a divide-and-conquer fashi	on.
PROJECT HIGHLIGHTS	
Team website of 2019 iGEM	
 Responsible for the website production: https://2019.igem.org/Team:ZJU-China 	

PERSONAL SKILLS

• Programming: C/C++, Java, Python, JavaScript

- Toolkits: OpenSSL, Click, DPDK, Vue
- Database: MySQL